Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3522-7. doi: 10.1073/pnas.1109818109. Epub 2012 Feb 13.
Trafficking of AMPA receptors (AMPARs) plays a key role in synaptic transmission. However, a general framework integrating the two major mechanisms regulating AMPAR delivery at postsynapses (i.e., surface diffusion and internal recycling) is lacking. To this aim, we built a model based on numerical trajectories of individual AMPARs, including free diffusion in the extrasynaptic space, confinement in the synapse, and trapping at the postsynaptic density (PSD) through reversible interactions with scaffold proteins. The AMPAR/scaffold kinetic rates were adjusted by comparing computer simulations to single-particle tracking and fluorescence recovery after photobleaching experiments in primary neurons, in different conditions of synapse density and maturation. The model predicts that the steady-state AMPAR number at synapses is bidirectionally controlled by AMPAR/scaffold binding affinity and PSD size. To reveal the impact of recycling processes in basal conditions and upon synaptic potentiation or depression, spatially and temporally defined exocytic and endocytic events were introduced. The model predicts that local recycling of AMPARs close to the PSD, coupled to short-range surface diffusion, provides rapid control of AMPAR number at synapses. In contrast, because of long-range diffusion limitations, extrasynaptic recycling is intrinsically slower and less synapse-specific. Thus, by discriminating the relative contributions of AMPAR diffusion, trapping, and recycling events on spatial and temporal bases, this model provides unique insights on the dynamic regulation of synaptic strength.
AMPA 受体 (AMPAR) 的转运在突触传递中起着关键作用。然而,目前缺乏一个整合调节突触后 AMPAR 递呈的两种主要机制(即表面扩散和内循环)的通用框架。为此,我们构建了一个基于个体 AMPAR 数值轨迹的模型,包括在突触外空间的自由扩散、在突触中的限制以及通过与支架蛋白的可逆相互作用在突触后密度 (PSD) 处的捕获。通过将计算机模拟与原代神经元中的单粒子追踪和光漂白后荧光恢复实验进行比较,调整了 AMPAR/支架的动力学速率,在不同的突触密度和成熟条件下进行了实验。该模型预测,突触处的 AMPAR 稳态数量受 AMPAR/支架结合亲和力和 PSD 大小的双向控制。为了揭示在基础条件下以及在突触增强或抑制时循环过程的影响,引入了空间和时间定义的胞吐和胞吞事件。该模型预测,靠近 PSD 的 AMPAR 局部循环与短程表面扩散相结合,可快速控制突触处的 AMPAR 数量。相比之下,由于长程扩散限制,突触外循环内在较慢且特异性较差。因此,通过在空间和时间基础上区分 AMPAR 扩散、捕获和循环事件的相对贡献,该模型提供了关于突触强度动态调节的独特见解。