Suppr超能文献

N-和 C-末端结构域决定连接组蛋白亚型 H1(0)和 H1c 与核小体的结合构象和亲和力的差异。

N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c.

机构信息

Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.

出版信息

J Biol Chem. 2012 Apr 6;287(15):11778-87. doi: 10.1074/jbc.M111.312819. Epub 2012 Feb 10.

Abstract

Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.

摘要

真核生物连接组蛋白或 H1 组蛋白调节体内 DNA 的压缩和基因表达。在哺乳动物中,这些蛋白质存在多种具有不同特性的同工型,这表明其异质性具有功能意义。连接组蛋白通常具有三部分结构,由保守的中心球状结构域组成,两侧是高度可变的短 N 端结构域和较长的高度碱性 C 端结构域。我们假设,个别亚型的可变末端结构域通过影响染色质结合相互作用,导致其功能异质性。我们开发了一种新的双色荧光恢复光漂白分析系统,其中可以共表达两个融合到光谱可分离荧光蛋白的 H1 蛋白,并在单个细胞中同时监测它们独立的结合动力学。这种方法与结构域交换和定点突变相结合,以确定末端结构域在连接组蛋白同工型(小鼠 H1(0)和 H1c)的差异结合特性中的作用。在 H1(0)和 H1c 之间交换 N 端结构域改变了它们与另一种变体的整体结合亲和力。相比之下,交换 C 端结构域改变了球状结构域的染色质相互作用表面。这些结果表明,连接组蛋白同工型以固有特异性的方式结合到染色质上,而高度可变的末端结构域有助于亚型之间的差异。本研究中开发的方法将广泛应用于研究其他组蛋白亚型和其他可移动蛋白的动态特性。

相似文献

引用本文的文献

3
Molecular and Cellular Functions of the Linker Histone H1.2.连接组蛋白H1.2的分子与细胞功能
Front Cell Dev Biol. 2022 Jan 11;9:773195. doi: 10.3389/fcell.2021.773195. eCollection 2021.
4
Unraveling linker histone interactions in nucleosomes.解析核小体中连接组蛋白的相互作用。
Curr Opin Struct Biol. 2021 Dec;71:87-93. doi: 10.1016/j.sbi.2021.06.001. Epub 2021 Jul 8.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验