Suppr超能文献

基于可穿戴传感器的跌倒检测系统的机器学习多类方法研究及采样率选择。

A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection.

机构信息

Institute of Complex Systems (iCoSys), School of Engineering and Architecture of Fribourg Switzerland, HES-SO University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland.

Centre for Health Technologies (CHT), School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.

出版信息

Sensors (Basel). 2021 Jan 30;21(3):938. doi: 10.3390/s21030938.

Abstract

Falls are dangerous for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance. This paper extends our previous work on the development of a Fall Detection System (FDS) using an inertial measurement unit worn at the waist. Data come from , a publicly available dataset containing records of Activities of Daily Living and falls. We first applied a preprocessing and a feature extraction stage before using five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms such as Random Forest and Gradient Boosting have the best performance, with a Sensitivity and Specificity both close to 99%. Our contribution is: a multi-class classification approach for fall detection combined with a study of the effect of the sensors' sampling rate on the performance of the FDS. Our multi-class classification approach splits the fall into three phases: pre-fall, impact, post-fall. The extension to a multi-class problem is not trivial and we present a well-performing solution. We experimented sampling rates between 1 and 200 Hz. The results show that, while high sampling rates tend to improve performance, a sampling rate of 50 Hz is generally sufficient for an accurate detection.

摘要

跌倒对老年人来说很危险,通常会造成严重伤害,尤其是当跌倒的人在没有帮助的情况下长时间躺在地上时。本文扩展了我们之前使用佩戴在腰部的惯性测量单元开发跌倒检测系统 (FDS) 的工作。数据来自,这是一个公开可用的数据集,包含日常生活活动和跌倒的记录。我们首先在使用五种机器学习算法之前应用预处理和特征提取阶段,从而可以对它们进行比较。随机森林和梯度提升等集成学习算法具有最佳性能,敏感性和特异性均接近 99%。我们的贡献是:一种用于跌倒检测的多类分类方法,并研究了传感器采样率对 FDS 性能的影响。我们的多类分类方法将跌倒分为三个阶段:跌倒前、撞击、跌倒后。将问题扩展到多类问题并不简单,我们提出了一种性能良好的解决方案。我们在 1 到 200 Hz 之间进行了采样率实验。结果表明,虽然高采样率往往会提高性能,但 50 Hz 的采样率通常足以进行准确检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/7866865/ec95b88c675e/sensors-21-00938-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验