Suppr超能文献

PKA 的亚细胞位置控制纹状体可塑性:棘突树突中的随机模拟。

Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites.

机构信息

The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America.

出版信息

PLoS Comput Biol. 2012 Feb;8(2):e1002383. doi: 10.1371/journal.pcbi.1002383. Epub 2012 Feb 9.

Abstract

Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity.

摘要

纹状体中的多巴胺释放与各种形式的奖励依赖学习有关。多巴胺导致 cAMP 的产生和蛋白激酶 A(PKA)的激活,PKA 参与纹状体突触可塑性和学习。PKA 及其蛋白靶标并非弥散地分布在整个神经元中,而是通过锚定分子(如蛋白激酶 A 锚定蛋白(AKAP))被限制在各种亚细胞隔室中。实验表明,阻断 PKA 与 AKAP 的相互作用会破坏其亚细胞定位,并阻止海马体和纹状体中的长时程增强(LTP);然而,这些实验并未揭示锚定的关键功能是将 PKA 定位在激活它的 cAMP 附近还是其靶标附近,例如位于突触后密度中的 AMPA 受体。我们已经基于已发表的生化测量数据,开发了一个具有棘突的中型投射神经元树突中信号通路的大规模随机反应扩散模型,以研究这个问题,并评估多巴胺信号是否在后突触具有空间特异性。该模型受到模拟奖励反应中记录的多巴胺脉冲的刺激。模拟表明,PKA 与腺苷酸环化酶在棘头或树突中的共定位导致 DARPP-32 Thr34 和 AMPA 受体 GluA1 Ser845 的磷酸化程度高于 PKA 远离腺苷酸环化酶时的磷酸化程度。模拟进一步表明,尽管 cAMP 表现出很强的空间梯度,但可扩散的 DARPP-32 促进了 PKA 活性的扩散,这表明需要额外的失活机制来产生 PKA 活性的空间特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a023/3276550/45da84e2aa97/pcbi.1002383.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验