Department of Physics, University of North Texas, Denton, Texas, USA.
Nanomedicine. 2012 Nov;8(8):1301-8. doi: 10.1016/j.nano.2012.02.002. Epub 2012 Feb 17.
A novel poly(oligo(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) ethyl ether methacrylate)-poly(acrylic acid) interpenetrating network (IPN) nanoparticle was synthesized. The temperature-responsive properties of the IPN nanoparticles were investigated by a dynamic light scattering method. Atomic force microscopic images confirmed the homogenous and monodisperse morphology of the IPN nanoparticles. Both visual observation and viscosity testing demonstrated that the IPN nanoparticles exhibit thermogelling properties at body temperature, 37 °C. Subsequent studies verified that such temperature-sensitive properties of IPN nanoparticles allow their ease of injection and then slow release of model proteins, both in vitro and in vivo. Histological analysis showed that our IPN implants exerted minimal inflammation following subcutaneous implantation. Our results support the idea that, by simply mixing with proteins of interest, the novel IPN nanoparticles can be used to form in situ thermogelling devices for controlled protein release.
This paper discusses a temperature responsive interpenetrating network (IPN) polymeric nanoparticle that can be used to form in situ thermogelling devices for controlled protein release by simply mixing them with proteins of interest.
合成了一种新型的聚(聚乙二醇甲基醚甲基丙烯酸酯-co-聚乙二醇乙基醚甲基丙烯酸酯)-聚(丙烯酸)互穿网络(IPN)纳米粒子。通过动态光散射法研究了 IPN 纳米粒子的温度响应特性。原子力显微镜图像证实了 IPN 纳米粒子具有均匀和单分散的形态。目视观察和粘度测试均表明,IPN 纳米粒子在体温 37°C 时具有热凝胶特性。随后的研究证实,IPN 纳米粒子的这种温度敏感性允许它们易于注射,然后在体外和体内缓慢释放模型蛋白。组织学分析表明,我们的 IPN 植入物在皮下植入后引起的炎症最小。我们的结果支持这样一种观点,即通过简单地与感兴趣的蛋白质混合,新型的 IPN 纳米粒子可用于形成原位温敏凝胶装置,以控制蛋白质的释放。
本文讨论了一种温度响应互穿网络(IPN)聚合物纳米粒子,通过简单地与感兴趣的蛋白质混合,该纳米粒子可用于形成原位温敏凝胶装置,以控制蛋白质的释放。