文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较成分载荷模式:主成分分析(PCA)与独立成分分析(ICA)在分析多元非正态数据中的应用。

Comparing patterns of component loadings: principal component analysis (PCA) versus independent component analysis (ICA) in analyzing multivariate non-normal data.

机构信息

Department of Applied Mathematics, Sejong University, Seoul, 143-747, Korea.

出版信息

Behav Res Methods. 2012 Dec;44(4):1239-43. doi: 10.3758/s13428-012-0193-1.


DOI:10.3758/s13428-012-0193-1
PMID:22351614
Abstract

Principal component analysis identifies uncorrelated components from correlated variables, and a few of these uncorrelated components usually account for most of the information in the input variables. Researchers interpret each component as a separate entity representing a latent trait or profile in a population. However, the components are guaranteed to be independent and uncorrelated only when the multivariate normality of the variables is assumed. If the normality assumption does not hold, components are guaranteed to be uncorrelated, but not independent. If the independence assumption is violated, each component cannot be uniquely interpreted because of contamination by other components. Therefore, in the present study, we introduced independent component analysis, whose components are uncorrelated and independent even when the multivariate normality assumption is violated, and each component carries unique information.

摘要

主成分分析从相关变量中识别出不相关的成分,其中少数几个不相关的成分通常可以解释输入变量中的大部分信息。研究人员将每个成分解释为代表人群中潜在特征或特征的单独实体。然而,只有当变量的多元正态性假设成立时,才能保证这些成分是独立的且不相关的。如果正态性假设不成立,则可以保证成分是不相关的,但不是独立的。如果独立性假设被违反,由于其他成分的污染,每个成分都不能被唯一地解释。因此,在本研究中,我们引入了独立成分分析,即使多元正态性假设被违反,其成分也是不相关和独立的,并且每个成分都携带独特的信息。

相似文献

[1]
Comparing patterns of component loadings: principal component analysis (PCA) versus independent component analysis (ICA) in analyzing multivariate non-normal data.

Behav Res Methods. 2012-12

[2]
Dynamic monitoring system for full-scale wastewater treatment plants.

Water Sci Technol. 2004

[3]
Comparison between principal component analysis and independent component analysis in electroencephalograms modelling.

Biom J. 2007-4

[4]
Bayesian independent component analysis recovers pathway signatures from blood metabolomics data.

J Proteome Res. 2012-7-17

[5]
Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model.

Multivariate Behav Res. 2018-4-6

[6]
Comparison of common components analysis with principal components analysis and independent components analysis: Application to SPME-GC-MS volatolomic signatures.

Talanta. 2018-2-1

[7]
The effects of EEG data transformations on the solution accuracy of principal component analysis.

Psychophysiology. 2011-3

[8]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[9]
Clusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock data.

Psychol Methods. 2011-10-3

[10]
Principals about principal components in statistical genetics.

Brief Bioinform. 2019-11-27

引用本文的文献

[1]
A multi-frequency whole-brain neural mass model with homeostatic feedback inhibition.

bioRxiv. 2025-8-31

[2]
Impaired interoception in Colombian victims of armed conflict with PTSD: a preliminary HEP study.

Front Psychol. 2025-4-25

[3]
Altered spatiotemporal brain dynamics of interoception in behavioural-variant frontotemporal dementia.

EBioMedicine. 2025-3

[4]
The Contrasting Role of Marine- and Land-Terminating Glaciers on Biogeochemical Cycles in Kongsfjorden, Svalbard.

Global Biogeochem Cycles. 2025-1

[5]
Auditory-motor synchronization and perception suggest partially distinct time scales in speech and music.

Commun Psychol. 2024-1-3

[6]
Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling.

Alzheimers Dement. 2024-5

[7]
Multivariate word properties in fluency tasks reveal markers of Alzheimer's dementia.

Alzheimers Dement. 2024-2

[8]
Social and non-social working memory in neurodegeneration.

Neurobiol Dis. 2023-7

[9]
Allostatic-interoceptive anticipation of social rejection.

Neuroimage. 2023-8-1

[10]
Sparse dimensionality reduction approaches in Mendelian randomisation with highly correlated exposures.

Elife. 2023-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索