University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, California 92093, USA.
J Biomed Opt. 2012 Jan;17(1):015001. doi: 10.1117/1.JBO.17.1.015001.
This study combines microfluidics with optical microablation in a microscopy system that allows for high-throughput manipulation of oocytes, automated media exchange, and long-term oocyte observation. The microfluidic component of the system transports oocytes from an inlet port into multiple flow channels. Within each channel, oocytes are confined against a microfluidic barrier using a steady fluid flow provided by an external computer-controlled syringe pump. This allows for easy media replacement without disturbing the oocyte location. The microfluidic and optical-laser microbeam ablation capabilities of the system were validated using surf clam (Spisula solidissima) oocytes that were immobilized in order to permit ablation of the 5 μm diameter nucleolinus within the oocyte nucleolus. Oocytes were the followed and assayed for polar body ejection.
本研究将微流控技术与光学微切割相结合,应用于一个显微镜系统中,该系统可实现高通量的卵母细胞操作、自动介质交换和长期卵母细胞观察。系统的微流控部分将卵母细胞从入口端口输送到多个流道中。在每个通道内,通过外部计算机控制的注射器泵提供的稳定流体流动,将卵母细胞限制在微流控屏障内。这使得可以轻松更换介质,而不会干扰卵母细胞的位置。使用固定的贻贝(Spisula solidissima)卵母细胞验证了系统的微流控和光学激光微束消融功能,以便在卵母细胞核仁内消融 5μm 直径的核仁素。对卵母细胞进行了跟踪并检测了极体的排出。