Lok Judith J, DeGruttola Victor
Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Building 2, 4th floor, Boston, Massachusetts 02115, USA.
Biometrics. 2012 Sep;68(3):745-54. doi: 10.1111/j.1541-0420.2011.01738.x. Epub 2012 Feb 21.
We estimate how the effect of antiretroviral treatment depends on the time from HIV-infection to initiation of treatment, using observational data. A major challenge in making inferences from such observational data arises from biases associated with the nonrandom assignment of treatment, for example bias induced by dependence of time of initiation on disease status. To address this concern, we develop a new class of Structural Nested Mean Models (SNMMs) to estimate the impact of time of initiation of treatment after infection on an outcome measured a fixed duration after initiation, compared to the effect of not initiating treatment. This leads to a SNMM that models the effect of multiple dosages of treatment on a time-dependent outcome, in contrast to most existing SNNMs, which focus on the effect of one dosage of treatment on an outcome measured at the end of the study. Our identifying assumption is that there are no unmeasured confounders. We illustrate our methods using the observational Acute Infection and Early Disease Research Program (AIEDRP) Core01 database on HIV. The current standard of care in HIV-infected patients is Highly Active Anti-Retroviral Treatment (HAART); however, the optimal time to start HAART has not yet been identified. The new class of SNNMs allows estimation of the dependence of the effect of 1 year of HAART on the time between estimated date of infection and treatment initiation, and on patient characteristics. Results of fitting this model imply that early use of HAART substantially improves immune reconstitution in the early and acute phase of HIV-infection.
我们利用观察性数据估计抗逆转录病毒治疗的效果如何取决于从感染艾滋病毒到开始治疗的时间。从这类观察性数据进行推断的一个主要挑战源于与治疗的非随机分配相关的偏差,例如由开始时间对疾病状态的依赖性所导致的偏差。为了解决这一问题,我们开发了一类新的结构嵌套均值模型(SNMMs),以估计感染后开始治疗的时间对开始治疗后固定时间段所测量的结局的影响,并与不开始治疗的效果进行比较。这就产生了一个SNMM,它对多次治疗剂量对随时间变化的结局的影响进行建模,这与大多数现有的SNMMs不同,后者关注的是一次治疗剂量对研究结束时所测量的结局的影响。我们的识别假设是不存在未测量的混杂因素。我们使用关于艾滋病毒的观察性急性感染和早期疾病研究项目(AIEDRP)Core01数据库来说明我们的方法。目前艾滋病毒感染患者的标准治疗是高效抗逆转录病毒治疗(HAART);然而,开始HAART的最佳时间尚未确定。这类新的SNMMs能够估计1年HAART治疗效果对估计感染日期与治疗开始之间的时间以及患者特征的依赖性。拟合该模型的结果表明,早期使用HAART可在艾滋病毒感染的早期和急性期显著改善免疫重建。