Suppr超能文献

心脏磁共振心肌灌注容积定量。可行性和方法比较。

Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison.

机构信息

Division of Imaging Sciences and Biomedical Engineering, Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom.

出版信息

Magn Reson Med. 2012 Dec;68(6):1994-2004. doi: 10.1002/mrm.24195. Epub 2012 Feb 21.

Abstract

The purpose of this study is to enable high spatial resolution voxel-wise quantitative analysis of myocardial perfusion in dynamic contrast-enhanced cardiovascular MR, in particular by finding the most favorable quantification algorithm in this context. Four deconvolution algorithms--Fermi function modeling, deconvolution using B-spline basis, deconvolution using exponential basis, and autoregressive moving average modeling--were tested to calculate voxel-wise perfusion estimates. The algorithms were developed on synthetic data and validated against a true gold-standard using a hardware perfusion phantom. The accuracy of each method was assessed for different levels of spatial averaging and perfusion rate. Finally, voxel-wise analysis was used to generate high resolution perfusion maps on real data acquired from five patients with suspected coronary artery disease and two healthy volunteers. On both synthetic and perfusion phantom data, the B-spline method had the highest error in estimation of myocardial blood flow. The autoregressive moving average modeling and exponential methods gave accurate estimates of myocardial blood flow. The Fermi model was the most robust method to noise. Both simulations and maps in the patients and hardware phantom showed that voxel-wise quantification of myocardium perfusion is feasible and can be used to detect abnormal regions.

摘要

本研究旨在实现动态对比增强心血管磁共振中高空间分辨率的心肌灌注容积分析,特别是找到最适合的定量算法。我们测试了四种解卷积算法——费米函数建模、使用 B 样条基的解卷积、使用指数基的解卷积和自回归移动平均建模——来计算像素级的灌注估计值。这些算法是在合成数据上开发的,并通过硬件灌注体模与真实的金标准进行了验证。评估了每种方法在不同空间平均水平和灌注率下的准确性。最后,使用从五名疑似冠心病患者和两名健康志愿者获得的真实数据进行了像素级分析,生成了高分辨率的灌注图。在合成数据和灌注体模数据上,B 样条方法在估计心肌血流量方面的误差最高。自回归移动平均建模和指数方法可以准确估计心肌血流量。费米模型对噪声的鲁棒性最高。患者和硬件体模中的模拟和图谱都表明,心肌灌注的像素级定量是可行的,可用于检测异常区域。

相似文献

1
Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison.
Magn Reson Med. 2012 Dec;68(6):1994-2004. doi: 10.1002/mrm.24195. Epub 2012 Feb 21.
2
Influence of spatial resolution on the accuracy of quantitative myocardial perfusion in first pass stress perfusion CMR.
Magn Reson Med. 2015 Apr;73(4):1623-31. doi: 10.1002/mrm.25249. Epub 2014 May 20.
4
Analysis of complex cardiovascular flow with three-component acceleration-encoded MRI.
Magn Reson Med. 2012 Jan;67(1):50-61. doi: 10.1002/mrm.22974. Epub 2011 May 16.
9
Interstudy repeatability of self-gated quantitative myocardial perfusion MRI.
J Magn Reson Imaging. 2016 Jun;43(6):1369-78. doi: 10.1002/jmri.25107. Epub 2015 Dec 13.
10
Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2017 Jan 27;19(1):11. doi: 10.1186/s12968-017-0324-z.

引用本文的文献

1
High-resolution quantification of stress perfusion defects by cardiac magnetic resonance.
Eur Heart J Imaging Methods Pract. 2024 Jan 9;2(1):qyae001. doi: 10.1093/ehjimp/qyae001. eCollection 2024 Jan.
2
Automatic calculation of myocardial perfusion reserve using deep learning with uncertainty quantification.
Quant Imaging Med Surg. 2023 Dec 1;13(12):7936-7949. doi: 10.21037/qims-23-840. Epub 2023 Oct 10.
4
Impact of Temporal Resolution and Methods for Correction on Cardiac Magnetic Resonance Perfusion Quantification.
J Magn Reson Imaging. 2022 Dec;56(6):1707-1719. doi: 10.1002/jmri.28180. Epub 2022 Mar 26.
5
Cardiac MR: From Theory to Practice.
Front Cardiovasc Med. 2022 Mar 3;9:826283. doi: 10.3389/fcvm.2022.826283. eCollection 2022.
8
Quantitative imaging: systematic review of perfusion/flow phantoms.
Eur Radiol Exp. 2020 Mar 4;4(1):15. doi: 10.1186/s41747-019-0133-2.
10
Hierarchical Bayesian myocardial perfusion quantification.
Med Image Anal. 2020 Feb;60:101611. doi: 10.1016/j.media.2019.101611. Epub 2019 Nov 9.

本文引用的文献

1
Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models.
IEEE Trans Pattern Anal Mach Intell. 1982 Feb;4(2):99-104. doi: 10.1109/tpami.1982.4767213.
3
Extended graphical model for analysis of dynamic contrast-enhanced MRI.
Magn Reson Med. 2011 Sep;66(3):868-78. doi: 10.1002/mrm.22819. Epub 2011 Mar 9.
4
Quantification of myocardial perfusion by cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2010 Oct 8;12(1):57. doi: 10.1186/1532-429X-12-57.
5
Noise measurement from magnitude MRI using local estimates of variance and skewness.
Phys Med Biol. 2010 Aug 21;55(16):N441-9. doi: 10.1088/0031-9155/55/16/N02. Epub 2010 Aug 3.
7
Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging.
JACC Cardiovasc Imaging. 2009 Jun;2(6):761-70. doi: 10.1016/j.jcmg.2009.04.003.
9
Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method.
J Cardiovasc Magn Reson. 2008 Nov 12;10(1):52. doi: 10.1186/1532-429X-10-52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验