Suppr超能文献

动态时间尺度解释了兴奋性动力学中的边缘稳定性。

Dynamical Timescale Explains Marginal Stability in Excitability Dynamics.

作者信息

Xu Tie, Barak Omri

机构信息

Rappaport Faculty of Medicine, Network Biology Research Laboratories, Technion, Haifa, Israel, 3200003.

Rappaport Faculty of Medicine, Network Biology Research Laboratories, Technion, Haifa, Israel, 3200003

出版信息

J Neurosci. 2017 Apr 26;37(17):4508-4524. doi: 10.1523/JNEUROSCI.2340-16.2017. Epub 2017 Mar 27.

Abstract

Action potentials, taking place over milliseconds, are the basis of neural computation. However, the dynamics of excitability over longer, behaviorally relevant timescales remain underexplored. A recent experiment used long-term recordings from single neurons to reveal multiple timescale fluctuations in response to constant stimuli, along with more reliable responses to variable stimuli. Here, we demonstrate that this apparent paradox is resolved if neurons operate in a marginally stable dynamic regime, which we reveal using a novel inference method. Excitability in this regime is characterized by large fluctuations while retaining high sensitivity to external varying stimuli. A new model with a dynamic recovery timescale that interacts with excitability captures this dynamic regime and predicts the neurons' response with high accuracy. The model explains most experimental observations under several stimulus statistics. The compact structure of our model permits further exploration on the network level. Excitability is the basis for all neural computations and its long-term dynamics reveal a complex combination of many timescales. We discovered that neural excitability operates under a marginally stable regime in which the system is dominated by internal fluctuation while retaining high sensitivity to externally varying stimuli. We offer a novel approach to modeling excitability dynamics by assuming that the recovery timescale is itself a dynamic variable. Our model is able to capture a wide range of experimental phenomena using few parameters with significantly higher predictive power than previous models.

摘要

持续数毫秒的动作电位是神经计算的基础。然而,在更长的、与行为相关的时间尺度上的兴奋性动态仍未得到充分探索。最近的一项实验使用单个神经元的长期记录来揭示对恒定刺激的多时间尺度波动,以及对可变刺激更可靠的反应。在这里,我们证明,如果神经元在一个临界稳定的动态状态下运作,这个明显的悖论就会得到解决,我们使用一种新颖的推理方法揭示了这一点。在这个状态下的兴奋性以大波动为特征,同时对外部变化的刺激保持高敏感性。一个具有与兴奋性相互作用的动态恢复时间尺度的新模型捕捉了这个动态状态,并高精度地预测了神经元的反应。该模型解释了在几种刺激统计下的大多数实验观察结果。我们模型的紧凑结构允许在网络层面进行进一步探索。兴奋性是所有神经计算的基础,其长期动态揭示了许多时间尺度的复杂组合。我们发现神经兴奋性在一个临界稳定的状态下运作,在这个状态下,系统由内部波动主导,同时对外部变化的刺激保持高敏感性。我们通过假设恢复时间尺度本身是一个动态变量,提供了一种模拟兴奋性动态的新方法。我们的模型能够用很少的参数捕捉广泛的实验现象,其预测能力明显高于以前的模型。

相似文献

1
Dynamical Timescale Explains Marginal Stability in Excitability Dynamics.动态时间尺度解释了兴奋性动力学中的边缘稳定性。
J Neurosci. 2017 Apr 26;37(17):4508-4524. doi: 10.1523/JNEUROSCI.2340-16.2017. Epub 2017 Mar 27.
10
Identification of biological neurons using adaptive observers.使用自适应观测器识别生物神经元。
Cogn Process. 2009 Feb;10 Suppl 1:S41-53. doi: 10.1007/s10339-008-0230-2. Epub 2008 Oct 22.

本文引用的文献

5
10
Neural timescales or lack thereof.神经时程或缺乏神经时程。
Prog Neurobiol. 2010 Jan 11;90(1):16-28. doi: 10.1016/j.pneurobio.2009.10.003. Epub 2009 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验