Suppr超能文献

一种通过粘性指状图案化在细胞外基质水凝胶中形成管腔的实用方法。

A practical method for patterning lumens through ECM hydrogels via viscous finger patterning.

作者信息

Bischel Lauren L, Lee Sang-Hoon, Beebe David J

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705-2275, USA.

出版信息

J Lab Autom. 2012 Apr;17(2):96-103. doi: 10.1177/2211068211426694. Epub 2012 Jan 24.

Abstract

Extracellular matrix (ECM) hydrogels with patterned lumens have been used as a framework to generate more physiologically relevant models of tissues, such as vessels and mammary ducts, for biological investigations. However, these models have not found widespread use in research labs or in high-throughput screening applications in large part because the basic methods for generating the lumen structures are generally cumbersome and slow. Here we present viscous finger patterning, a technique to generate lumens through ECM hydrogels in microchannels that can be accomplished using manual or automated pipetting. Passive pumping is used to flow culture media through an unpolymerized hydrogel, creating a lumen through the hydrogel that is subsequently polymerized. Viscous finger patterning takes advantage of viscous fingering, the fluid dynamics phenomenon where a less viscous fluid will flow through and displace a more viscous fluid. We have characterized the technique and used it to create a variety of channel geometries and ECM hydrogel compositions, as well as for the generation of lumens surrounded by multiple hydrogel layers. Because viscous finger patterning can be performed with automated liquid handling systems, high-throughput generation of ECM hydrogels with patterned lumen is enabled. The ability to rapidly and cost-effectively create large numbers of lumens in natural polymers overcomes a critical barrier to the use of more physiologically relevant tissue models in a variety of biological studies and drug screening applications.

摘要

具有图案化管腔的细胞外基质(ECM)水凝胶已被用作一种框架,以生成更具生理相关性的组织模型,如血管和乳腺导管,用于生物学研究。然而,这些模型在研究实验室或高通量筛选应用中尚未得到广泛应用,很大程度上是因为生成管腔结构的基本方法通常繁琐且耗时。在此,我们介绍粘性指状图案化技术,这是一种通过微通道中的ECM水凝胶生成管腔的技术,可使用手动或自动移液操作来完成。利用被动泵使培养基流过未聚合的水凝胶,在水凝胶中形成一个管腔,随后水凝胶聚合。粘性指状图案化技术利用了粘性指进现象,即一种粘性较小的流体将流过并取代粘性较大的流体的流体动力学现象。我们已对该技术进行了表征,并将其用于创建各种通道几何形状和ECM水凝胶组合物,以及用于生成被多个水凝胶层包围的管腔。由于粘性指状图案化可通过自动液体处理系统进行,因此能够高通量生成具有图案化管腔的ECM水凝胶。在天然聚合物中快速且经济高效地创建大量管腔的能力克服了在各种生物学研究和药物筛选应用中使用更具生理相关性的组织模型的一个关键障碍。

相似文献

1
A practical method for patterning lumens through ECM hydrogels via viscous finger patterning.
J Lab Autom. 2012 Apr;17(2):96-103. doi: 10.1177/2211068211426694. Epub 2012 Jan 24.
3
4
3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels.
Acta Biomater. 2019 Sep 1;95:201-213. doi: 10.1016/j.actbio.2019.06.017. Epub 2019 Jun 21.
5
Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
Acta Biomater. 2019 Feb;85:84-93. doi: 10.1016/j.actbio.2018.12.039. Epub 2018 Dec 24.
6
Hydrogels derived from central nervous system extracellular matrix.
Biomaterials. 2013 Jan;34(4):1033-40. doi: 10.1016/j.biomaterials.2012.10.062. Epub 2012 Nov 16.
7
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
Biotechnol Adv. 2017 Sep;35(5):530-544. doi: 10.1016/j.biotechadv.2017.05.006. Epub 2017 May 27.
8
Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications.
J Biomed Mater Res A. 2018 Jan;106(1):147-159. doi: 10.1002/jbm.a.36218. Epub 2017 Sep 26.

引用本文的文献

2
Applications of microfluidic chip technology in microvascular thrombosis research.
Mikrochim Acta. 2025 May 24;192(6):371. doi: 10.1007/s00604-025-07239-1.
4
Models for Studying Ductal Carcinoma In Situ Progression.
Adv Exp Med Biol. 2025;1464:95-108. doi: 10.1007/978-3-031-70875-6_6.
5
Injury-on-a-chip for modelling microvascular trauma-induced coagulation.
Lab Chip. 2025 Jan 28;25(3):440-453. doi: 10.1039/d4lc00471j.
7
Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms.
Front Physiol. 2024 Jul 29;15:1425618. doi: 10.3389/fphys.2024.1425618. eCollection 2024.
8
Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids.
Front Cardiovasc Med. 2024 Jun 13;11:1336910. doi: 10.3389/fcvm.2024.1336910. eCollection 2024.
10
Bioengineering methods for vascularizing organoids.
Cell Rep Methods. 2024 Jun 17;4(6):100779. doi: 10.1016/j.crmeth.2024.100779. Epub 2024 May 16.

本文引用的文献

1
Automation of three-dimensional cell culture in arrayed microfluidic devices.
J Lab Autom. 2011 Jun;16(3):171-85. doi: 10.1016/j.jala.2011.02.003. Epub 2011 May 16.
2
Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels.
Biotechnol Bioeng. 2011 Jul;108(7):1693-703. doi: 10.1002/bit.23102. Epub 2011 Mar 11.
3
Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers.
Biomaterials. 2011 Mar;32(7):1872-9. doi: 10.1016/j.biomaterials.2010.11.023. Epub 2010 Dec 8.
4
Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects.
Integr Biol (Camb). 2011 Apr;3(4):439-50. doi: 10.1039/c0ib00063a. Epub 2010 Dec 7.
6
Geometrically controlled endothelial tubulogenesis in micropatterned gels.
Tissue Eng Part A. 2010 Jul;16(7):2255-63. doi: 10.1089/ten.TEA.2009.0584.
7
A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
Biomaterials. 2010 May;31(13):3459-64. doi: 10.1016/j.biomaterials.2010.01.082. Epub 2010 Feb 18.
8
Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.
Biomaterials. 2009 Sep;30(27):4833-41. doi: 10.1016/j.biomaterials.2009.05.043. Epub 2009 Jun 21.
9
Polymer fibers as contact guidance to orient microvascularization in a 3D environment.
J Biomed Mater Res A. 2010 Mar 15;92(4):1587-97. doi: 10.1002/jbm.a.32479.
10
Flow rate analysis of a surface tension driven passive micropump.
Lab Chip. 2007 Nov;7(11):1475-8. doi: 10.1039/b707637a. Epub 2007 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验