School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA; Molecular Diagnostics Laboratory, Sentara Norfolk General Hospital, Norfolk, VA 23507, USA.
School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA; Biomedical Sciences Graduate Program, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
Acta Biomater. 2019 Sep 1;95:201-213. doi: 10.1016/j.actbio.2019.06.017. Epub 2019 Jun 21.
The extracellular matrix (ECM) of tissues is an important mediator of cell function. Moreover, understanding cellular dynamics within their specific tissue context is also important for developmental biology, cancer research, and regenerative medicine. However, robust in vitro models that incorporate tissue-specific microenvironments are lacking. Here we describe a novel mammary-specific culture protocol that combines a self-gelling hydrogel comprised solely of ECM from decellularized rat or human breast tissue with the use of our previously described 3D bioprinting platform. We initially demonstrate that undigested and decellularized mammary tissue can support mammary epithelial and tumor cell growth. We then describe a methodology for generating mammary ECM extracts that can spontaneously gel to form hydrogels. These ECM hydrogels retain unique structural and signaling profiles that elicit differential responses when normal mammary and breast cancer cells are cultured within them. Using our bioprinter, we establish that we can generate large organoids/tumoroids in the all mammary-derived hydrogel. These findings demonstrate that our system allows for growth of organoids/tumoroids in a tissue-specific matrix with unique properties, thus providing a suitable platform for ECM and epithelial/cancer cell studies. STATEMENT OF SIGNIFICANCE: Factors within extracellular matrices (ECMs) are specific to their tissue of origin. It has been shown that tissue specific factors within the mammary gland's ECM have pronounced effects on cellular differentiation and cancer behavior. Understanding the role of the ECM in controlling cell fate has major implications for developmental biology, tissue engineering, and cancer therapy. However, in vitro models to study cellular interactions with tissue specific ECM are lacking. Here we describe the generation of 3D hydrogels consisting solely of human or mouse mammary ECM. We demonstrate that these novel 3D culture substrates can sustain large 3D bioprinted organoid and tumoroid formation. This is the first demonstration of an all mammary ECM culture system capable of sustaining large structural growths.
组织的细胞外基质 (ECM) 是细胞功能的重要介质。此外,了解细胞在其特定组织环境中的动态变化对于发育生物学、癌症研究和再生医学也很重要。然而,缺乏包含组织特异性微环境的强大体外模型。在这里,我们描述了一种新的乳腺特异性培养方案,该方案结合了由去细胞化的大鼠或人乳腺组织的 ECM 组成的自凝胶水凝胶,以及我们之前描述的 3D 生物打印平台的使用。我们最初证明,未消化和去细胞化的乳腺组织可以支持乳腺上皮和肿瘤细胞的生长。然后,我们描述了一种生成乳腺 ECM 提取物的方法,该提取物可以自发凝胶形成水凝胶。这些 ECM 水凝胶保留独特的结构和信号特征,当正常乳腺和乳腺癌细胞在其中培养时,会引起不同的反应。使用我们的生物打印机,我们建立了可以在所有乳腺衍生的水凝胶中生成大的类器官/肿瘤的方法。这些发现表明,我们的系统允许在具有独特特性的组织特异性基质中生长类器官/肿瘤,从而为 ECM 和上皮/癌细胞研究提供了合适的平台。
意义声明:细胞外基质 (ECM) 中的因子与其起源组织特异性相关。已经表明,乳腺 ECM 中的组织特异性因子对细胞分化和癌症行为有显著影响。了解 ECM 控制细胞命运的作用对发育生物学、组织工程和癌症治疗具有重要意义。然而,缺乏用于研究细胞与组织特异性 ECM 相互作用的体外模型。在这里,我们描述了 3D 水凝胶的生成,这些水凝胶仅由人或鼠乳腺 ECM 组成。我们证明,这些新型 3D 培养基质可以维持大的 3D 生物打印类器官和肿瘤的形成。这是第一个能够维持大结构生长的全乳腺 ECM 培养系统的演示。
Acta Biomater. 2019-6-21
Acta Biomater. 2019-3-1
Adv Healthc Mater. 2019-2-6
Breast Cancer Res. 2020-7-31
Med Rev (2021). 2025-1-14
Bioengineering (Basel). 2025-5-9
Biofabrication. 2025-6-3
Transl Cancer Res. 2025-2-28
Stem Cell Rev Rep. 2025-4
Cardiovasc Eng Technol. 2024-12
Tissue Eng Regen Med. 2024-12
Tissue Eng Part A. 2019-5-10
ACS Appl Mater Interfaces. 2019-1-4
J Tissue Eng Regen Med. 2018-8-13
Int J Biochem Cell Biol. 2016-12