Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
J Phys Chem B. 2012 Mar 29;116(12):3900-6. doi: 10.1021/jp301444q. Epub 2012 Mar 15.
Using numerically exact path integral Monte Carlo simulations, the excitation energy transfer in the Fenna-Matthews-Olson (FMO) complex is determined at room temperature. The employed system and environment parameters are based on previously reported atomistic simulations. When starting with excitations localized at specific chromophores, no coherence features can be observed. In contrast, when starting with delocalized excitations, traces of coherent motion become apparent. On the one hand, as experimental findings account for much stronger quantum coherent motion, these results suggest a reevaluation of the underlying spectral densities. On the other hand, the results emphasize that the initial preparation of the excitonic system needs to be taken into account carefully when attempting to reproduce the respective experiments.
使用数值精确的路径积分蒙特卡罗模拟,在室温下确定了 Fenna-Matthews-Olson(FMO)复合物中的激发能量转移。所采用的系统和环境参数基于先前报道的原子模拟。当从特定发色团的局部激发开始时,不会观察到相干特征。相比之下,当从非局域激发开始时,相干运动的痕迹变得明显。一方面,由于实验结果表明量子相干运动要强得多,这些结果表明需要重新评估潜在的光谱密度。另一方面,这些结果强调了当试图复制相应的实验时,需要仔细考虑激发子系统的初始制备。