Suppr超能文献

低重力下步态的预测模拟表明,跳跃是首选的运动策略。

Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.

机构信息

Department of Mechanical Engineering, Centro Universitário da FEI, Av. Humberto de A. C. Branco, 3972, São Bernardo do Campo, SP 01525-000, Brazil.

出版信息

J Biomech. 2012 Apr 30;45(7):1293-8. doi: 10.1016/j.jbiomech.2012.01.029. Epub 2012 Feb 24.

Abstract

The investigation of gait strategies at low gravity environments gained momentum recently as manned missions to the Moon and to Mars are reconsidered. Although reports by astronauts of the Apollo missions indicate alternative gait strategies might be favored on the Moon, computational simulations and experimental investigations have been almost exclusively limited to the study of either walking or running, the locomotion modes preferred under Earth's gravity. In order to investigate the gait strategies likely to be favored at low gravity a series of predictive, computational simulations of gait are performed using a physiological model of the musculoskeletal system, without assuming any particular type of gait. A computationally efficient optimization strategy is utilized allowing for multiple simulations. The results reveal skipping as more efficient and less fatiguing than walking or running and suggest the existence of a walk-skip rather than a walk-run transition at low gravity. The results are expected to serve as a background to the design of experimental investigations of gait under simulated low gravity.

摘要

最近,随着载人登月和火星任务的重新考虑,对低重力环境下步态策略的研究得到了加强。尽管阿波罗任务的宇航员报告表明,在月球上可能会青睐替代的步态策略,但计算模拟和实验研究几乎完全局限于对步行或跑步的研究,这是在地球重力下首选的运动模式。为了研究在低重力下可能倾向于采用的步态策略,使用肌肉骨骼系统的生理模型对步态进行了一系列预测性的计算模拟,而不假定任何特定类型的步态。利用一种计算效率高的优化策略,可以进行多次模拟。结果表明,跳跃比步行或跑步更有效率,也更不容易疲劳,并表明在低重力下存在走-跳而不是走-跑的转变。这些结果有望为在模拟低重力下进行步态实验研究的设计提供背景。

相似文献

1
Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
J Biomech. 2012 Apr 30;45(7):1293-8. doi: 10.1016/j.jbiomech.2012.01.029. Epub 2012 Feb 24.
2
Hopping locomotion at different gravity: metabolism and mechanics in humans.
J Appl Physiol (1985). 2016 May 15;120(10):1223-9. doi: 10.1152/japplphysiol.00839.2015. Epub 2015 Dec 3.
3
Skipping vs. running as the bipedal gait of choice in hypogravity.
J Appl Physiol (1985). 2015 Jul 1;119(1):93-100. doi: 10.1152/japplphysiol.01021.2014. Epub 2015 Apr 30.
4
Small step or giant leap? Human locomotion on Mars.
J Br Interplanet Soc. 2004 Jul-Aug;57(7-8):262-70.
5
The preferred walk to run transition speed in actual lunar gravity.
J Exp Biol. 2014 Sep 15;217(Pt 18):3200-3. doi: 10.1242/jeb.105684.
6
Space suit bioenergetics: framework and analysis of unsuited and suited activity.
Aviat Space Environ Med. 2007 Nov;78(11):1013-22. doi: 10.3357/asem.1952.2007.
8
The Apollo Number: space suits, self-support, and the walk-run transition.
PLoS One. 2009 Aug 12;4(8):e6614. doi: 10.1371/journal.pone.0006614.
9
Disparity in the effect of partial gravity simulated using a new apparatus on different rat hindlimb muscles.
Life Sci Space Res (Amst). 2024 Nov;43:54-67. doi: 10.1016/j.lssr.2024.08.004. Epub 2024 Aug 16.
10
Locomotion in simulated zero gravity: ground reaction forces.
Aviat Space Environ Med. 2004 Mar;75(3):203-10.

引用本文的文献

1
Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight.
Antioxidants (Basel). 2024 Apr 2;13(4):432. doi: 10.3390/antiox13040432.
2
The development of gait and mobility: Form and function in infant locomotion.
Wiley Interdiscip Rev Cogn Sci. 2024 Jul-Aug;15(4):e1677. doi: 10.1002/wcs.1677. Epub 2024 Mar 18.
3
Sensorimotor adaptation of locomotor synergies to gravitational constraint.
NPJ Microgravity. 2024 Jan 11;10(1):5. doi: 10.1038/s41526-024-00350-2.
5
High-level motor planning allows flexible walking at different gait patterns in a neuromechanical model.
Front Bioeng Biotechnol. 2022 Dec 8;10:959357. doi: 10.3389/fbioe.2022.959357. eCollection 2022.
6
Movement in low gravity environments (MoLo) programme-The MoLo-L.O.O.P. study protocol.
PLoS One. 2022 Nov 23;17(11):e0278051. doi: 10.1371/journal.pone.0278051. eCollection 2022.
7
Reducing cost of transport in asymmetrical gaits: lessons from unilateral skipping.
Eur J Appl Physiol. 2023 Mar;123(3):623-631. doi: 10.1007/s00421-022-05088-x. Epub 2022 Nov 14.
8
Joint Cartilage in Long-Duration Spaceflight.
Biomedicines. 2022 Jun 8;10(6):1356. doi: 10.3390/biomedicines10061356.
9

本文引用的文献

1
Optimality principles for model-based prediction of human gait.
J Biomech. 2010 Apr 19;43(6):1055-60. doi: 10.1016/j.jbiomech.2009.12.012. Epub 2010 Jan 13.
2
The Apollo Number: space suits, self-support, and the walk-run transition.
PLoS One. 2009 Aug 12;4(8):e6614. doi: 10.1371/journal.pone.0006614.
4
Synthesis of natural arm swing motion in human bipedal walking.
J Biomech. 2008;41(7):1417-26. doi: 10.1016/j.jbiomech.2008.02.031. Epub 2008 Apr 15.
5
Compliant leg behaviour explains basic dynamics of walking and running.
Proc Biol Sci. 2006 Nov 22;273(1603):2861-7. doi: 10.1098/rspb.2006.3637.
6
Computer optimization of a minimal biped model discovers walking and running.
Nature. 2006 Jan 5;439(7072):72-5. doi: 10.1038/nature04113. Epub 2005 Sep 11.
7
Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
J Biomech. 2006;39(6):1107-15. doi: 10.1016/j.jbiomech.2005.02.010. Epub 2005 Jul 14.
8
Foot and ankle forces during an automobile collision: the influence of muscles.
J Biomech. 2004 May;37(5):637-44. doi: 10.1016/j.jbiomech.2003.09.030.
10
Invariant aspects of human locomotion in different gravitational environments.
Acta Astronaut. 2001 Aug-Nov;49(3-10):191-8. doi: 10.1016/s0094-5765(01)00098-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验