Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA.
Ann Neurol. 2012 Feb;71(2):157-68. doi: 10.1002/ana.22621.
Therapeutic devices provide new options for treating drug-resistant epilepsy. These devices act by a variety of mechanisms to modulate neuronal activity. Only vagus nerve stimulation (VNS), which continues to develop new technology, is approved for use in the United States. Deep brain stimulation of anterior thalamus for partial epilepsy recently was approved in Europe and several other countries. Responsive neurostimulation, which delivers stimuli to 1 or 2 seizure foci in response to a detected seizure, recently completed a successful multicenter trial. Several other trials of brain stimulation are in planning or underway. Transcutaneous magnetic stimulation (TMS) may provide a noninvasive method to stimulate cortex. Controlled studies of TMS are split on efficacy, which may depend on whether a seizure focus is near a possible region for stimulation. Seizure detection devices in the form of shake detectors via portable accelerometers can provide notification of an ongoing tonic-clonic seizure, or peace of mind in the absence of notification. Prediction of seizures from various aspects of electroencephalography (EEG) is in early stages. Prediction appears to be possible in a subpopulation of people with refractory seizures, and a clinical trial of an implantable prediction device is underway. Cooling of neocortex or hippocampus reversibly can attenuate epileptiform EEG activity and seizures, but engineering problems remain in its implementation. Optogenetics is a new technique that can control excitability of specific populations of neurons with light. Inhibition of epileptiform activity has been demonstrated in hippocampal slices, but use in humans will require more work. In general, devices provide useful palliation for otherwise uncontrollable seizures, but with a different risk profile than with most drugs. Optimizing the place of devices in therapy for epilepsy will require further development and clinical experience.
治疗设备为治疗耐药性癫痫提供了新的选择。这些设备通过多种机制来调节神经元活动。只有迷走神经刺激 (VNS),它继续开发新技术,在美国被批准使用。深部脑刺激丘脑前部治疗部分性癫痫最近在欧洲和其他几个国家获得批准。反应性神经刺激,根据检测到的癫痫发作向 1 或 2 个癫痫灶发送刺激,最近完成了一项成功的多中心试验。其他几项脑刺激试验正在计划或进行中。经颅磁刺激 (TMS) 可能提供一种非侵入性的刺激皮层的方法。TMS 的对照研究在疗效上存在分歧,这可能取决于癫痫灶是否靠近可能的刺激区域。以便携式加速度计形式的震颤探测器的癫痫发作检测设备可以提供正在进行的强直阵挛性癫痫发作的通知,或者在没有通知的情况下提供安心。从脑电图 (EEG) 的各个方面预测癫痫发作处于早期阶段。似乎有可能在难治性癫痫发作的亚人群中进行预测,并且正在进行一项植入式预测设备的临床试验。通过可逆地冷却新皮质或海马,可以减轻癫痫样 EEG 活动和癫痫发作,但在实施方面仍存在工程问题。光遗传学是一种新的技术,可以用光控制特定神经元群体的兴奋性。已经在海马切片中证明了癫痫样活动的抑制,但在人类中使用还需要更多的工作。一般来说,这些设备为无法控制的癫痫发作提供了有用的缓解,但与大多数药物相比,风险状况不同。优化设备在癫痫治疗中的位置需要进一步的发展和临床经验。