Suppr超能文献

用于设计和分析细胞系统中二元决策策略的框架。

A framework for designing and analyzing binary decision-making strategies in cellular systems.

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.

出版信息

Integr Biol (Camb). 2012 Mar;4(3):310-7. doi: 10.1039/C2IB90009B. Epub 2012 Mar 1.

Abstract

Cells make many binary (all-or-nothing) decisions based on noisy signals gathered from their environment and processed through noisy decision-making pathways. Reducing the effect of noise to improve the fidelity of decision-making comes at the expense of increased complexity, creating a tradeoff between performance and metabolic cost. We present a framework based on rate distortion theory, a branch of information theory, to quantify this tradeoff and design binary decision-making strategies that balance low cost and accuracy in optimal ways. With this framework, we show that several observed behaviors of binary decision-making systems, including random strategies, hysteresis, and irreversibility, are optimal in an information-theoretic sense for various situations. This framework can also be used to quantify the goals around which a decision-making system is optimized and to evaluate the optimality of cellular decision-making systems by a fundamental information-theoretic criterion. As proof of concept, we use the framework to quantify the goals of the externally triggered apoptosis pathway.

摘要

细胞根据从环境中收集并通过噪声决策途径处理的嘈杂信号做出许多二元(全有或全无)决策。为了提高决策的保真度而降低噪声的影响,这是以增加复杂性为代价的,这在性能和代谢成本之间产生了权衡。我们提出了一个基于率失真理论的框架,这是信息论的一个分支,用于量化这种权衡,并设计出以最佳方式平衡低成本和准确性的二元决策策略。通过这个框架,我们表明,二元决策系统的几种观察到的行为,包括随机策略、滞后和不可逆性,在各种情况下从信息论的意义上讲都是最优的。该框架还可用于量化决策系统优化的目标,并通过基本的信息论标准来评估细胞决策系统的最优性。作为概念验证,我们使用该框架来量化外部触发的细胞凋亡途径的目标。

相似文献

2
The application of information theory to biochemical signaling systems.信息论在生化信号系统中的应用。
Phys Biol. 2012 Aug;9(4):045011. doi: 10.1088/1478-3975/9/4/045011. Epub 2012 Aug 7.
6
Dynamic decision making: human control of complex systems.动态决策:人类对复杂系统的控制
Acta Psychol (Amst). 1992 Dec;81(3):211-41. doi: 10.1016/0001-6918(92)90019-a.
8
Information-theoretic analysis of the directional influence between cellular processes.细胞过程之间定向影响的信息论分析
PLoS One. 2017 Nov 9;12(11):e0187431. doi: 10.1371/journal.pone.0187431. eCollection 2017.
10
Dynamics of intracellular information decoding.细胞内信息解码的动力学。
Phys Biol. 2011 Oct;8(5):055007. doi: 10.1088/1478-3975/8/5/055007. Epub 2011 Aug 10.

本文引用的文献

2
Information transmission in genetic regulatory networks: a review.遗传调控网络中的信息传递:综述。
J Phys Condens Matter. 2011 Apr 20;23(15):153102. doi: 10.1088/0953-8984/23/15/153102. Epub 2011 Apr 1.
3
Communication theory and multicellular biology.通信理论与多细胞生物学。
Integr Biol (Camb). 2011 Apr;3(4):350-67. doi: 10.1039/c0ib00117a. Epub 2011 Mar 22.
5
Strategies for cellular decision-making.细胞决策策略。
Mol Syst Biol. 2009;5:326. doi: 10.1038/msb.2009.83. Epub 2009 Nov 17.
8
Mutual information between input and output trajectories of biochemical networks.生化网络输入与输出轨迹之间的互信息。
Phys Rev Lett. 2009 May 29;102(21):218101. doi: 10.1103/PhysRevLett.102.218101. Epub 2009 May 27.
9
Information flow and optimization in transcriptional regulation.转录调控中的信息流与优化
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70. doi: 10.1073/pnas.0806077105. Epub 2008 Aug 21.
10
Bistability, epigenetics, and bet-hedging in bacteria.细菌中的双稳态、表观遗传学和适应性策略
Annu Rev Microbiol. 2008;62:193-210. doi: 10.1146/annurev.micro.62.081307.163002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验