Department of Neurology, Goethe-University Frankfurt, Frankfurt Germany.
Neurology. 2012 Mar 13;78(11):787-95. doi: 10.1212/WNL.0b013e318249f702. Epub 2012 Feb 29.
Deep brain stimulation (DBS) of the ventral intermediate nucleus of thalamus (VIM) is a treatment option in medically intractable tremor, such as essential tremor or tremor-dominant Parkinson disease (PD). Although functional studies demonstrated modulation of remote regions, the structural network supporting this is as yet unknown. In this observational study, we analyzed the network mediating clinical tremor modulation.
We studied 12 patients undergoing VIM stimulation for debilitating tremor. We initiated noninvasive diffusion tractography from tremor-suppressive VIM electrode contacts. Moreover, we tested for the contribution of primary motor projections in this structural correlate of a functional tremor network, comparing the connectivity of effective DBS contacts with those of adjacent, but clinically ineffective, stimulation sites.
VIM stimulation resulted in decrease of tremor and improvement in quality of life. Tractography initiated from the effective stimulation site reconstructed a highly reproducible network of structural connectivity comprising motor cortical, subcortical, and cerebellar sites and the brainstem, forming the anatomic basis for remote effects of VIM stimulation. This network is congruent with functional imaging studies in humans and with thalamic projections found in the animal literature. Connectivity to the primary motor cortex seemed to play a key role in successful stimulation.
Patients undergoing DBS provide a unique opportunity to assess an electrophysiologically defined seed region in human thalamus, a technique that is usually restricted to animal research. In the future, preoperative tractography could aid with stereotactic planning of individual subcortical target points for stimulation in tremor and in other disease entities.
丘脑腹中间核(VIM)深部脑刺激(DBS)是治疗药物难治性震颤的一种选择,例如特发性震颤或震颤为主的帕金森病(PD)。尽管功能研究表明可以调节远程区域,但支持该区域的结构网络尚不清楚。在这项观察性研究中,我们分析了介导临床震颤调节的网络。
我们研究了 12 例因震颤而接受 VIM 刺激的患者。我们从抑制震颤的 VIM 电极接触点开始进行非侵入性扩散轨迹追踪。此外,我们测试了初级运动投射在该功能震颤网络结构相关物中的作用,比较了有效 DBS 接触点的连通性与相邻但临床无效的刺激部位的连通性。
VIM 刺激可降低震颤并改善生活质量。从有效刺激部位起始的轨迹追踪可重建出高度可重复的结构连通性网络,包括运动皮质、皮质下和小脑部位以及脑干,为 VIM 刺激的远程影响提供了解剖学基础。该网络与人类功能成像研究以及动物文献中发现的丘脑投射一致。与初级运动皮质的连通性似乎在成功刺激中起着关键作用。
接受 DBS 的患者为评估人类丘脑的电生理定义的种子区域提供了独特的机会,这一技术通常仅限于动物研究。将来,术前轨迹追踪可以帮助个体化皮质下刺激靶点的立体定向规划,以用于震颤和其他疾病实体的治疗。