Suppr超能文献

综合稀有变异检测、功能预测和基因网络的复合重测序全基因组关联研究(CR-GWAS)。

Integrating Rare-Variant Testing, Function Prediction, and Gene Network in Composite Resequencing-Based Genome-Wide Association Studies (CR-GWAS).

机构信息

Department of Agronomy, Kansas State University, Manhattan, Kansas 66506.

出版信息

G3 (Bethesda). 2011 Aug;1(3):233-43. doi: 10.1534/g3.111.000364. Epub 2011 Aug 1.

Abstract

High-density array-based genome-wide association studies (GWAS) are complemented by exome sequencing and whole-genome resequencing-based association studies. Here we present a composite resequencing-based genome-wide association study (CR-GWAS) strategy that systematically exploits collective biological information and analytical tools for a robust analysis. We showcased the utility of this strategy by using Arabidopsis (Arabidopsis thaliana) resequencing data. Bioinformatic predictions of biological function alteration at each locus were integrated into the process of association testing of both common and rare variants for complex traits with a suite of statistics. Significant signals were then filtered with a priori candidate loci generated from genome database and gene network models to obtain a posteriori candidate loci. A probabilistic gene network (AraNet) that interrogates network neighborhoods of genes was then used to expand the filtering power to examine the significant testing signals. Using this strategy, we confirmed the known true positives and identified several new promising associations. Promising genes (AP1, FCA, FRI, FLC, FLM, SPL5, FY, and DCL2) were shown to control for flowering time through either common variants or rare variants within a diverse set of Arabidopsis accessions. Although many of these candidate genes were cloned earlier with mutational studies, identifying their allele variation contribution to overall phenotypic variation among diverse natural accessions is critical. Our rare allele testing established a greater number of connections than previous analyses in which this issue was not addressed. More importantly, our results demonstrated the potential of integrating various biological, statistical, and bioinformatic tools into complex trait dissection.

摘要

高密度基因芯片全基因组关联研究(GWAS)可与外显子测序和全基因组重测序关联研究相补充。在这里,我们提出了一种基于重测序的全基因组关联研究(CR-GWAS)策略,该策略系统地利用集体生物学信息和分析工具进行稳健的分析。我们通过使用拟南芥(Arabidopsis thaliana)重测序数据展示了该策略的实用性。在对常见和罕见变异与复杂性状进行关联测试的过程中,对每个基因座的生物学功能改变的生物信息学预测被整合到了一系列统计数据中。然后,通过来自基因组数据库和基因网络模型的先验候选基因座对显著信号进行过滤,以获得后验候选基因座。然后,使用一个概率基因网络(AraNet)来检测基因网络的邻域,以扩大过滤能力,检查显著的测试信号。使用这种策略,我们证实了已知的真正阳性,并确定了几个新的有前途的关联。有前途的基因(AP1、FCA、FRI、FLC、FLM、SPL5、FY 和 DCL2)通过不同的拟南芥品系中的常见或罕见变异来控制开花时间。尽管这些候选基因中的许多已经通过突变研究进行了克隆,但确定它们在不同自然品系中的等位基因变异对整体表型变异的贡献是至关重要的。我们的稀有等位基因测试建立了比以前的分析更多的联系,以前的分析没有解决这个问题。更重要的是,我们的结果证明了将各种生物学、统计学和生物信息学工具整合到复杂性状分析中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af6/3276137/fe94913dcf82/233f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验