Suppr超能文献

Borg:一种自适应的多目标进化计算框架。

Borg: an auto-adaptive many-objective evolutionary computing framework.

机构信息

Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Evol Comput. 2013 Summer;21(2):231-59. doi: 10.1162/EVCO_a_00075. Epub 2012 Apr 9.

Abstract

This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines ε-dominance, a measure of convergence speed named ε-progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameterization space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems.

摘要

本研究引入了 Borg 多目标进化算法(MOEA)用于多目标、多模态优化。Borg MOEA 将 ε-支配(一种衡量收敛速度的度量,称为 ε-进展)、命名为 ε-进展的随机重启和自适应多算子重组结合到一个统一的优化框架中。对来自 DTLZ、WFG 和 CEC 2009 测试套件的 18 个测试问题的 33 个实例进行的比较研究表明,Borg 在大多数测试问题上优于或等同于六个最先进的 MOEAs。对每个测试问题的性能使用每个算法的可行参数化空间的 1,000 个点拉丁超立方采样进行评估。使用 50 个重复随机种子试验评估每个采样 MOEA 参数化的统计性能。Borg MOEA 不是单个算法;相反,它代表了一类算法,其算子是根据问题自适应选择的。关键算子的自适应发现对于基准测试变异算子如何增强对复杂多目标问题的搜索具有特别重要的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验