CEMES, UPR 8011, CNRS-Université de Toulouse, 29 Rue Jeanne Marvig, BP 94347, F-31055 Toulouse, France.
ACS Nano. 2012 Apr 24;6(4):3434-40. doi: 10.1021/nn300470j. Epub 2012 Mar 12.
Self-assembled plasmonic nanoparticle networks (PNN) composed of chains of 12 nm diameter crystalline gold nanoparticles exhibit a longitudinally coupled plasmon mode centered at 700 nm. We have exploited this longitudinal absorption band to efficiently confine light fields and concentrate heat sources in the close vicinity of these plasmonic chain networks. The mapping of the two phenomena on the same superstructures was performed by combining two-photon luminescence and fluorescence polarization anisotropy imaging techniques. Besides the light and heat concentration, we show experimentally that the planar spatial distribution of optical field intensity can be simply modulated by controlling the linear polarization of the incident optical excitation. On the contrary, the heat production, which is obtained here by exciting the structures within the optically transparent window of biological tissues, is evenly spread over the entire PNN. This contrasts with the usual case of localized heating in continuous nanowires, thus opening opportunities for these networks in light-induced hyperthermia applications. Furthermore, we propose a unified theoretical framework to account for both the nonlinear optical and thermal near-fields around PNN. The associated numerical simulations, based on a Green's function formalism, are in excellent agreement with the experimental images. This formalism therefore provides a versatile tool for the accurate engineering of optical and thermodynamical properties of complex plasmonic colloidal architectures.
由直径为 12nm 的结晶金纳米粒子链组成的自组装等离子体纳米粒子网络 (PNN) 表现出中心位于 700nm 的纵向耦合等离子体模式。我们利用这个纵向吸收带有效地限制了光场,并将热源集中在这些等离子体链网络的附近。通过结合双光子发光和荧光偏振各向异性成像技术,在相同的超结构上对这两种现象进行了映射。除了光和热的集中,我们还通过实验证明,通过控制入射光激发的线性偏振,可以简单地调节光场强度的平面空间分布。相反,这里通过在生物组织的光学透明窗口内激发结构来获得的热产生,均匀地分布在整个 PNN 上。这与连续纳米线中常见的局部加热情况形成对比,从而为这些网络在光诱导热疗应用中提供了机会。此外,我们提出了一个统一的理论框架来解释 PNN 周围的非线性光学和热近场。基于格林函数形式的相关数值模拟与实验图像非常吻合。因此,该方法为复杂等离子体胶体结构的光学和热力学性质的精确工程提供了一种通用工具。