Suppr超能文献

一般人群死亡率的遗传、生理和生活方式预测因素。

Genetic, physiological, and lifestyle predictors of mortality in the general population.

机构信息

Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands.

出版信息

Am J Public Health. 2012 Apr;102(4):e3-10. doi: 10.2105/AJPH.2011.300596. Epub 2012 Feb 16.

Abstract

OBJECTIVES

We investigated the quality of 162 variables, focusing on the contribution of genetic markers, used solely or in combination with other characteristics, when predicting mortality.

METHODS

In 5974 participants from the Rotterdam Study, followed for a median of 15.1 years, 7 groups of factors including age and gender, genetics, socioeconomics, lifestyle, physiological characteristics, prevalent diseases, and indicators of general health were related to all-cause mortality. Genetic variables were identified from 8 genome-wide association scans (n = 19,033) and literature review.

RESULTS

We observed 3174 deaths during follow-up. The fully adjusted model (C-statistic for 15-year follow-up [C15y] = 0.80; 95% confidence interval [CI] = 0.79, 0.81) predicted mortality well [corrected]. Most of the additional information apart from age and sex stemmed from physiological markers, prevalent diseases, and general health. Socioeconomic factors and lifestyle contributed meaningfully to mortality risk prediction with longer prediction horizon. Although specific genetic factors were independently associated with mortality, jointly they contributed little to mortality prediction (C(15y) = 0.56; 95% CI = 0.55, 0.57).

CONCLUSIONS

Mortality can be predicted reasonably well over a long period. Genetic factors independently predict mortality, but only modestly more than other risk indicators.

摘要

目的

我们研究了 162 个变量的质量,重点关注遗传标记的贡献,这些标记单独或与其他特征结合使用时可预测死亡率。

方法

在随访中位数为 15.1 年的 5974 名鹿特丹研究参与者中,年龄和性别、遗传学、社会经济状况、生活方式、生理特征、现患疾病以及一般健康状况指标等 7 组因素与全因死亡率相关。遗传变量是从 8 项全基因组关联扫描(n = 19033)和文献综述中确定的。

结果

我们观察到随访期间发生了 3174 例死亡。完全调整模型(15 年随访的 C 统计量 [C15y] = 0.80;95%置信区间 [CI] = 0.79, 0.81)预测死亡率良好[已纠正]。除年龄和性别外,大多数额外信息来自生理标志物、现患疾病和一般健康状况。社会经济因素和生活方式对死亡率风险预测具有重要意义,预测时间更长。尽管特定的遗传因素与死亡率独立相关,但它们共同对死亡率预测的贡献很小(C15y = 0.56;95%CI = 0.55, 0.57)。

结论

可以在较长时间内合理预测死亡率。遗传因素独立预测死亡率,但与其他风险指标相比,只有适度增加。

相似文献

3
A weak sense of coherence is associated with a higher mortality risk.较低的连贯感与较高的死亡风险相关。
J Epidemiol Community Health. 2014 May;68(5):411-7. doi: 10.1136/jech-2013-203085. Epub 2014 Jan 2.

引用本文的文献

3
Healthy Lifestyle and the Likelihood of Becoming a Centenarian.健康的生活方式与成为百岁老人的可能性。
JAMA Netw Open. 2024 Jun 3;7(6):e2417931. doi: 10.1001/jamanetworkopen.2024.17931.
5
Interpretable machine learning prediction of all-cause mortality.全因死亡率的可解释机器学习预测
Commun Med (Lond). 2022 Oct 3;2:125. doi: 10.1038/s43856-022-00180-x. eCollection 2022.
10
An Emergent Integrated Aging Process Conserved Across Primates.灵长类动物中保守的新兴综合衰老过程。
J Gerontol A Biol Sci Med Sci. 2019 Oct 4;74(11):1689-1698. doi: 10.1093/gerona/glz110.

本文引用的文献

1
The Rotterdam Study: 2012 objectives and design update.《鹿特丹研究:2012 年目标和设计更新》
Eur J Epidemiol. 2011 Aug;26(8):657-86. doi: 10.1007/s10654-011-9610-5. Epub 2011 Aug 30.
3
Biodemography of human ageing.人类衰老的生物人口学。
Nature. 2010 Mar 25;464(7288):536-42. doi: 10.1038/nature08984.
6
7
Total and cause-specific mortality in the cardiovascular health study.心血管健康研究中的全因死亡率和特定病因死亡率。
J Gerontol A Biol Sci Med Sci. 2009 Dec;64(12):1251-61. doi: 10.1093/gerona/glp127. Epub 2009 Sep 1.
8
Genetic risk prediction--are we there yet?基因风险预测——我们做到了吗?
N Engl J Med. 2009 Apr 23;360(17):1701-3. doi: 10.1056/NEJMp0810107. Epub 2009 Apr 15.
9
Changing course in ageing research: The healthy ageing phenotype.衰老研究的转向:健康衰老表型
Maturitas. 2009 May 20;63(1):13-9. doi: 10.1016/j.maturitas.2009.02.006. Epub 2009 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验