Fatih University, Department of Electrical and Electronics Engineering, 34500 Buyukcekmece, Istanbul, Turkey; E-Mail:
Sensors (Basel). 2009;9(9):7167-76. doi: 10.3390/s90907167. Epub 2009 Sep 9.
Artificial neural network (ANN) based prediction of the response of a microbend fiber optic sensor is presented. To the best of our knowledge no similar work has been previously reported in the literature. Parallel corrugated plates with three deformation cycles, 6 mm thickness of the spacer material and 16 mm mechanical periodicity between deformations were used in the microbend sensor. Multilayer Perceptron (MLP) with different training algorithms, Radial Basis Function (RBF) network and General Regression Neural Network (GRNN) are used as ANN models in this work. All of these models can predict the sensor responses with considerable errors. RBF has the best performance with the smallest mean square error (MSE) values of training and test results. Among the MLP algorithms and GRNN the Levenberg-Marquardt algorithm has good results. These models successfully predict the sensor responses, hence ANNs can be used as useful tool in the design of more robust fiber optic sensors.
提出了一种基于人工神经网络(ANN)的微弯光纤传感器响应预测方法。据我们所知,以前在文献中没有类似的工作。微弯传感器中使用了具有三个变形周期、6 毫米间隔材料厚度和 16 毫米变形之间机械周期性的平行波纹板。多层感知器(MLP)具有不同的训练算法、径向基函数(RBF)网络和广义回归神经网络(GRNN),这些模型在这项工作中都被用作 ANN 模型。所有这些模型都可以用相当大的误差来预测传感器的响应。RBF 具有最佳性能,其训练和测试结果的均方误差(MSE)值最小。在 MLP 算法和 GRNN 中,Levenberg-Marquardt 算法具有良好的效果。这些模型成功地预测了传感器的响应,因此,ANN 可以作为设计更稳健的光纤传感器的有用工具。