Suppr超能文献

使用响应面法和人工神经网络评估通过二甲醚蒸汽重整和部分氧化制氢的过程。

Evaluation of hydrogen production via steam reforming and partial oxidation of dimethyl ether using response surface methodology and artificial neural network.

作者信息

Mansouri Karim, Bahmanzadegan Fatemeh, Ghaemi Ahad

机构信息

School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran.

出版信息

Sci Rep. 2024 Jul 6;14(1):15570. doi: 10.1038/s41598-024-66402-5.

Abstract

This study aims to develop two models for thermodynamic data on hydrogen generation from the combined processes of dimethyl ether steam reforming and partial oxidation, applying artificial neural networks (ANN) and response surface methodology (RSM). Three factors are recognized as important determinants for the hydrogen and carbon monoxide mole fractions. The RSM used the quadratic model to formulate two correlations for the outcomes. The ANN modeling used two algorithms, namely multilayer perceptron (MLP) and radial basis function (RBF). The optimum configuration for the MLP, employing the Levenberg-Marquardt (trainlm) algorithm, consisted of three hidden layers with 15, 10, and 5 neurons, respectively. The ideal RBF configuration contained a total of 80 neurons. The optimum configuration of ANN achieved the best mean squared error (MSE) performance of 3.95e-05 for the hydrogen mole fraction and 4.88e-05 for the carbon monoxide mole fraction after nine epochs. Each of the ANN and RSM models produced accurate predictions of the actual data. The prediction performance of the ANN model was 0.9994, which is higher than the RSM model's 0.9771. The optimal condition was obtained at O/C of 0.4, S/C of 2.5, and temperature of 250 °C to achieve the highest H production with the lowest CO emission.

摘要

本研究旨在应用人工神经网络(ANN)和响应面方法(RSM),开发两种用于二甲醚蒸汽重整和部分氧化联合制氢过程热力学数据的模型。三个因素被认为是氢气和一氧化碳摩尔分数的重要决定因素。RSM使用二次模型为结果建立了两个相关性。ANN建模使用了两种算法,即多层感知器(MLP)和径向基函数(RBF)。采用Levenberg-Marquardt(trainlm)算法的MLP的最佳配置由分别具有15、10和5个神经元的三个隐藏层组成。理想的RBF配置总共包含80个神经元。ANN的最佳配置在九个训练周期后,氢气摩尔分数的均方误差(MSE)性能最佳,为3.95e-05,一氧化碳摩尔分数的均方误差为4.88e-05。ANN模型和RSM模型都对实际数据进行了准确预测。ANN模型的预测性能为0.9994,高于RSM模型的0.9771。在氧碳比为0.4、水碳比为2.5和温度为250°C的条件下获得了最佳条件,以实现最高的氢气产量和最低的一氧化碳排放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c72/11227547/5ac2cf67fa1b/41598_2024_66402_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验