Suppr超能文献

在负载下的肌动蛋白网络生长。

Actin network growth under load.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2012 Mar 7;102(5):1049-58. doi: 10.1016/j.bpj.2012.01.030. Epub 2012 Mar 6.

Abstract

Many processes in eukaryotic cells, including the crawling motion of the whole cell, rely on the growth of branched actin networks from surfaces. In addition to their well-known role in generating propulsive forces, actin networks can also sustain substantial pulling loads thanks to their persistent attachment to the surface from which they grow. The simultaneous network elongation and surface attachment inevitably generate a force that opposes network growth. Here, we study the local dynamics of a growing actin network, accounting for simultaneous network elongation and surface attachment, and show that there exist several dynamical regimes that depend on both network elasticity and the kinetic parameters of actin polymerization. We characterize this in terms of a phase diagram and provide a connection between mesoscopic theories and the microscopic dynamics of an actin network at a surface. Our framework predicts the onset of instabilities that lead to the local detachment of the network and translate to oscillatory behavior and waves, as observed in many cellular phenomena and in vitro systems involving actin network growth, such as the saltatory dynamics of actin-propelled oil drops.

摘要

真核细胞中的许多过程,包括整个细胞的蠕动运动,都依赖于分支肌动蛋白网络从表面的生长。除了它们在产生推进力方面的众所周知的作用外,肌动蛋白网络还可以由于其与生长表面的持久附着而承受大量的拉力。网络的同时伸长和表面附着不可避免地产生一种与网络生长相反的力。在这里,我们研究了生长中的肌动蛋白网络的局部动力学,同时考虑了网络的伸长和表面的附着,并表明存在几种动力学状态,这取决于网络弹性和肌动蛋白聚合的动力学参数。我们用相图来描述这一点,并提供了介观理论和表面肌动蛋白网络微观动力学之间的联系。我们的框架预测了导致网络局部脱离的不稳定性的发生,这导致了观察到的许多细胞现象和涉及肌动蛋白网络生长的体外系统中的振荡行为和波,例如肌动蛋白驱动的油滴的跳跃动力学。

相似文献

1
Actin network growth under load.
Biophys J. 2012 Mar 7;102(5):1049-58. doi: 10.1016/j.bpj.2012.01.030. Epub 2012 Mar 6.
2
Loading history determines the velocity of actin-network growth.
Nat Cell Biol. 2005 Dec;7(12):1219-23. doi: 10.1038/ncb1336. Epub 2005 Nov 20.
3
Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24670-24678. doi: 10.1073/pnas.2011785117. Epub 2020 Sep 21.
4
Mesoscopic model of actin-based propulsion.
PLoS Comput Biol. 2012;8(11):e1002764. doi: 10.1371/journal.pcbi.1002764. Epub 2012 Nov 1.
5
Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):13978-83. doi: 10.1073/pnas.1100549108. Epub 2011 Aug 8.
6
Mechanical detection of a long-range actin network emanating from a biomimetic cortex.
Biophys J. 2014 Aug 19;107(4):854-62. doi: 10.1016/j.bpj.2014.07.008.
7
How actin network dynamics control the onset of actin-based motility.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14440-5. doi: 10.1073/pnas.1117096109. Epub 2012 Aug 20.
8
A mechanochemical model of actin filaments.
Biophys J. 2012 Aug 22;103(4):719-27. doi: 10.1016/j.bpj.2012.07.020.
9
Biphasic Effect of Profilin Impacts the Formin mDia1 Force-Sensing Mechanism in Actin Polymerization.
Biophys J. 2017 Jul 25;113(2):461-471. doi: 10.1016/j.bpj.2017.06.012.
10
Passive and active microrheology for cross-linked F-actin networks in vitro.
Acta Biomater. 2010 Apr;6(4):1207-18. doi: 10.1016/j.actbio.2009.10.044. Epub 2009 Oct 31.

引用本文的文献

2
Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction.
F1000Res. 2018 Sep 25;7. doi: 10.12688/f1000research.15860.1. eCollection 2018.
3
Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model.
Cytoskeleton (Hoboken). 2017 Dec;74(12):490-503. doi: 10.1002/cm.21389. Epub 2017 Aug 21.
4
Bending forces plastically deform growing bacterial cell walls.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5778-83. doi: 10.1073/pnas.1317497111. Epub 2014 Apr 7.
5
Control of actin-based motility through localized actin binding.
Phys Biol. 2013 Dec;10(6):066004. doi: 10.1088/1478-3975/10/6/066004. Epub 2013 Nov 14.

本文引用的文献

1
A nucleator arms race: cellular control of actin assembly.
Nat Rev Mol Cell Biol. 2010 Apr;11(4):237-51. doi: 10.1038/nrm2867. Epub 2010 Mar 18.
2
Actin, a central player in cell shape and movement.
Science. 2009 Nov 27;326(5957):1208-12. doi: 10.1126/science.1175862.
4
VASP governs actin dynamics by modulating filament anchoring.
Biophys J. 2007 Feb 1;92(3):1081-9. doi: 10.1529/biophysj.106.091884. Epub 2006 Nov 10.
5
Loading history determines the velocity of actin-network growth.
Nat Cell Biol. 2005 Dec;7(12):1219-23. doi: 10.1038/ncb1336. Epub 2005 Nov 20.
6
Non-equilibration of hydrostatic pressure in blebbing cells.
Nature. 2005 May 19;435(7040):365-9. doi: 10.1038/nature03550.
7
Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14725-30. doi: 10.1073/pnas.0405902101. Epub 2004 Sep 17.
8
Soft Listeria: actin-based propulsion of liquid drops.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906. doi: 10.1103/PhysRevE.69.061906. Epub 2004 Jun 2.
9
The role of substrate curvature in actin-based pushing forces.
Curr Biol. 2004 Jun 22;14(12):1094-8. doi: 10.1016/j.cub.2004.06.023.
10
Stability of adhesion clusters under constant force.
Phys Rev Lett. 2004 Mar 12;92(10):108102. doi: 10.1103/PhysRevLett.92.108102. Epub 2004 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验