Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Nat Commun. 2018 Nov 30;9(1):5098. doi: 10.1038/s41467-018-07546-7.
Macroscopic properties of polymers arise from microscopic entanglement of polymer chains. Entangled polymer dynamics have been described theoretically by time- and space-averaged relaxation modes of single chains occurring at different time and length scales. However, theoretical and experimental studies along this framework provide oversimplified picture of spatiotemporally heterogeneous polymer dynamics. Characterization of entangled polymer dynamics beyond this paradigm requires a method that enables to capture motion and relaxation occurring in real space at different length and time scales. Here we develop new single-molecule characterization platform by combining super-resolution fluorescence imaging and recently developed single-molecule tracking method, cumulative-area tracking, which enables to quantify the chain motion in the length and time scale of nanometres to micrometres and milliseconds to minutes. Using linear and cyclic dsDNA molecules as model systems, our new method reveals chain-position-dependent motion of the entangled linear chains, which is beyond the scope of current theoretical framework.
聚合物的宏观性质源于聚合物链的微观缠结。缠结聚合物动力学已经通过在不同时间和长度尺度上发生的单链的时间和空间平均弛豫模式在理论上进行了描述。然而,沿着这一框架的理论和实验研究提供了对时空不均匀聚合物动力学过于简化的描述。超越这一范例来描述缠结聚合物动力学需要一种能够在不同长度和时间尺度上捕获真实空间中发生的运动和弛豫的方法。在这里,我们通过结合超分辨率荧光成像和最近开发的单分子跟踪方法,累积面积跟踪,开发了新的单分子表征平台,该方法能够在纳米到微米和毫秒到分钟的长度和时间尺度上量化链的运动。使用线性和环状 dsDNA 分子作为模型系统,我们的新方法揭示了缠结线性链的链位置相关运动,这超出了当前理论框架的范围。