Suppr超能文献

测量动态社会接触模式可解释 H1N1v 流感的传播。

Measured dynamic social contact patterns explain the spread of H1N1v influenza.

机构信息

Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.

出版信息

PLoS Comput Biol. 2012;8(3):e1002425. doi: 10.1371/journal.pcbi.1002425. Epub 2012 Mar 8.

Abstract

Patterns of social mixing are key determinants of epidemic spread. Here we present the results of an internet-based social contact survey completed by a cohort of participants over 9,000 times between July 2009 and March 2010, during the 2009 H1N1v influenza epidemic. We quantify the changes in social contact patterns over time, finding that school children make 40% fewer contacts during holiday periods than during term time. We use these dynamically varying contact patterns to parameterise an age-structured model of influenza spread, capturing well the observed patterns of incidence; the changing contact patterns resulted in a fall of approximately 35% in the reproduction number of influenza during the holidays. This work illustrates the importance of including changing mixing patterns in epidemic models. We conclude that changes in contact patterns explain changes in disease incidence, and that the timing of school terms drove the 2009 H1N1v epidemic in the UK. Changes in social mixing patterns can be usefully measured through simple internet-based surveys.

摘要

社交混合模式是疫情传播的关键决定因素。本研究通过一项基于互联网的社交接触调查呈现了 2009 年至 2010 年期间(2009 年 H1N1v 流感流行期间),由一组参与者在 9000 多次调查中提供的结果。我们量化了随时间变化的社交接触模式,发现在校学生在假期的接触次数比上学期间减少了 40%。我们使用这些动态变化的接触模式来参数化流感传播的年龄结构模型,该模型很好地捕捉到了发病的实际模式;在假期中,接触模式的变化导致流感的繁殖数下降了约 35%。这项工作说明了在流行病情模型中纳入变化的混合模式的重要性。我们得出的结论是,接触模式的变化解释了疾病发病率的变化,而学校学期的时间安排推动了英国 2009 年 H1N1v 流感的流行。通过简单的基于互联网的调查,可以有效地测量社交混合模式的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db3e/3297563/54d7a956d78a/pcbi.1002425.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验