文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向内皮细胞中的乳酸转运蛋白 MCT1 可抑制乳酸诱导的 HIF-1 激活和肿瘤血管生成。

Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

机构信息

Pole of Pharmacology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.

出版信息

PLoS One. 2012;7(3):e33418. doi: 10.1371/journal.pone.0033418. Epub 2012 Mar 13.


DOI:10.1371/journal.pone.0033418
PMID:22428047
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3302812/
Abstract

Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

摘要

向糖酵解代谢的转变是肿瘤细胞对缺氧的快速适应。尽管这种代谢转换主要可能代表一种挽救途径,以满足增殖肿瘤细胞的生物能量和生物合成需求,但它也会产生与肿瘤中氧气梯度相匹配的乳酸盐梯度。除了代谢废物之外,已知乳酸盐阴离子通过激活肿瘤细胞中的缺氧诱导因子-1(HIF-1)途径参与癌症侵袭性,部分原因在于。然而,乳酸盐是否也可以直接有利于内皮细胞(ECs)中的 HIF-1 激活,从而为阻断血管生成提供新的可药物选择,这是一个尚未解决的问题。在这项研究中,我们因此专注于我们之前确定为癌细胞中乳酸摄取的主要促进剂的单羧酸转运蛋白 1(MCT1)在 ECs 中的作用。我们发现,阻断乳酸盐流入 ECs 会导致 HIF-1 依赖性血管生成受到抑制。我们的证明基于在常氧 ECs 中乳酸诱导的 HIF-1 激活的前所未有的表征,以及随后血管内皮生长因子受体 2(VEGFR2)和碱性成纤维细胞生长因子(bFGF)表达的增加。此外,使用包括内皮细胞迁移和管状形成在内的各种功能测定,以及通过活体显微镜和免疫组织化学对肿瘤血管生成进行体内成像,我们记录了 MCT1 阻断剂可以作为真正的 HIF-1 抑制剂,从而产生抗血管生成作用。结合先前证明 MCT1 是肿瘤细胞之间乳酸盐交换的关键调节剂,目前的研究确定 MCT1 抑制作为一种联合代谢和抗血管生成活性的治疗方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/985618a3aeb8/pone.0033418.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/0aa60380f9da/pone.0033418.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/26612b5ffc5a/pone.0033418.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/c0e87b20e817/pone.0033418.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/50d875273eac/pone.0033418.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/125b02f79137/pone.0033418.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/43ad68b90bba/pone.0033418.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/85f4225ecf02/pone.0033418.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/d31338c7ef60/pone.0033418.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/985618a3aeb8/pone.0033418.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/0aa60380f9da/pone.0033418.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/26612b5ffc5a/pone.0033418.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/c0e87b20e817/pone.0033418.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/50d875273eac/pone.0033418.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/125b02f79137/pone.0033418.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/43ad68b90bba/pone.0033418.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/85f4225ecf02/pone.0033418.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/d31338c7ef60/pone.0033418.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f048/3302812/985618a3aeb8/pone.0033418.g009.jpg

相似文献

[1]
Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

PLoS One. 2012-3-13

[2]
Monocarboxylate transporter 1 is a key player in glioma-endothelial cell crosstalk.

Mol Carcinog. 2017-12

[3]
Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.

PLoS One. 2012-10-17

[4]
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.

Cancer Res. 2011-2-7

[5]
miR-124 Suppresses Pancreatic Ductal Adenocarcinoma Growth by Regulating Monocarboxylate Transporter 1-Mediated Cancer Lactate Metabolism.

Cell Physiol Biochem. 2018

[6]
Lactate promotes glutamine uptake and metabolism in oxidative cancer cells.

Cell Cycle. 2016

[7]
MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury.

Theranostics. 2024

[8]
Regulation of lactate accumulation in bovine mammary epithelial cells by LPS-induced HIF-1α/MCT1 pathway.

Microb Pathog. 2025-2

[9]
Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis.

Int Immunopharmacol. 2024-12-25

[10]
Hyperpolarized [1-C]pyruvate-to-[1-C]lactate conversion is rate-limited by monocarboxylate transporter-1 in the plasma membrane.

Proc Natl Acad Sci U S A. 2020-8-24

引用本文的文献

[1]
The role of MCT1 in tumor progression and targeted therapy: a comprehensive review.

Front Immunol. 2025-6-19

[2]
Endothelial metabolic zonation in the vascular network: a spatiotemporal blueprint for angiogenesis.

Am J Physiol Heart Circ Physiol. 2025-8-1

[3]
Lactate-Mediated Crosstalk Between Tumor Cells and Cancer-Associated Fibroblasts: Mechanisms and Therapeutic Opportunities.

Int J Mol Sci. 2025-6-11

[4]
Development and experimental verification of a prognosis model for hypoxia- and lactate metabolism-associated genes in HNSCC.

Medicine (Baltimore). 2025-6-13

[5]
Tumor suppressing function of SLC16A7 in bladder cancer and its pan-cancer analysis.

BMC Cancer. 2025-5-23

[6]
Esophageal cancer and precancerous lesions: focus on resident bacteria and fungi.

Microbiol Spectr. 2025-7

[7]
Lactic acid metabolism: gynecological cancer's Achilles' heel.

Discov Oncol. 2025-5-2

[8]
Lactate induces oxidative stress by HIF1α stabilization and circadian clock disturbance in mammary gland of dairy cows.

J Anim Sci Biotechnol. 2025-5-1

[9]
Lactate and lactylation in cancer.

Signal Transduct Target Ther. 2025-2-12

[10]
Sulfated and Glucuronidated Conjugates of 3-(4-Hydroxy-3-methoxyphenyl) Propionic Acid Can Promote NO Production by Elevated Ca Release from the Endoplasmic Reticulum in HUVECs.

ACS Omega. 2025-1-16

本文引用的文献

[1]
Hallmarks of cancer: the next generation.

Cell. 2011-3-4

[2]
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.

Cancer Res. 2011-2-7

[3]
On some aspects of the thermodynamic of membrane recycling mediated by fluid phase endocytosis: evaluation of published data and perspectives.

Cell Biochem Biophys. 2010-4

[4]
HIF-1: upstream and downstream of cancer metabolism.

Curr Opin Genet Dev. 2009-11-26

[5]
Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer.

Oncogene. 2009-11-2

[6]
Comparison of methods for measuring oxygen consumption in tumor cells in vitro.

Anal Biochem. 2009-9-18

[7]
Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.

Radiother Oncol. 2009-7-13

[8]
Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis.

Blood. 2009-9-3

[9]
Understanding the Warburg effect: the metabolic requirements of cell proliferation.

Science. 2009-5-22

[10]
Regulation of angiogenesis by oxygen and metabolism.

Dev Cell. 2009-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索