Suppr超能文献

颅面再生用骨修复细胞。

Bone repair cells for craniofacial regeneration.

机构信息

Department of Periodontics and Oral Medicine and Michigan Center for Oral Health Research, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA.

出版信息

Adv Drug Deliv Rev. 2012 Sep;64(12):1310-9. doi: 10.1016/j.addr.2012.03.005. Epub 2012 Mar 10.

Abstract

Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both somatic and stem cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice.

摘要

重建复杂的颅面畸形是在创伤、先天缺陷或疾病情况下的一项临床挑战。细胞疗法的应用代表了增强颅颌面创伤愈合的再生反应的最先进方法之一。体细胞和干细胞都已被用于治疗复杂的骨缺损,并且在寻找最适合于人类再生医学中细胞疗法传递的支架方面取得了进展。作为用于颅面再生的临床应用的此类方法的一个例子,Ixmyelocel-T 或骨修复细胞是骨髓来源的干细胞和祖细胞的来源。它们是通过使用单次通过灌注生物反应器生产的,用于 CD90+间充质干细胞和 CD14+单核细胞/巨噬细胞祖细胞。Ixmyelocel-T 的应用已显示出在肌肉、血管、神经和骨组织再生方面的潜力。本文的目的是强调用于修复口腔和颅面复合体中的骨和软组织缺损的细胞疗法。该领域目前仍处于早期阶段,但本综述将提供对使用细胞疗法进行的进展的见解,以期最终发展为临床实践。

相似文献

1
Bone repair cells for craniofacial regeneration.
Adv Drug Deliv Rev. 2012 Sep;64(12):1310-9. doi: 10.1016/j.addr.2012.03.005. Epub 2012 Mar 10.
2
Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.
J Cell Physiol. 2018 Mar;233(3):1825-1835. doi: 10.1002/jcp.25940. Epub 2017 May 23.
3
The potential of adipose-derived stem cells in craniofacial repair and regeneration.
Birth Defects Res C Embryo Today. 2012 Mar;96(1):95-7. doi: 10.1002/bdrc.21001.
4
Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
J Biomater Appl. 2016 Jul;31(1):132-9. doi: 10.1177/0885328216638636. Epub 2016 Mar 14.
5
Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects.
Cytotherapy. 2015 Nov;17(11):1572-81. doi: 10.1016/j.jcyt.2015.07.013. Epub 2015 Sep 3.
6
Potential replication of induced pluripotent stem cells for craniofacial reconstruction.
Curr Stem Cell Res Ther. 2014 May;9(3):205-14. doi: 10.2174/1574888x09666140213155800.
7
Tissue engineering craniofacial defects with adult stem cells? Are we ready yet?
Pediatr Res. 2008 May;63(5):478-86. doi: 10.1203/PDR.0b013e31816bdf36.
10

引用本文的文献

1
The influence of soluble epoxide hydrolase inhibition and their PUFA-derived epoxides in osteoblast bone metabolism: an in vitro study.
Biochim Biophys Acta Mol Cell Biol Lipids. 2025 Oct;1870(7):159669. doi: 10.1016/j.bbalip.2025.159669. Epub 2025 Jul 31.
2
The Role of Heparan Sulfate in Bone Repair and Regeneration.
Calcif Tissue Int. 2025 Jul 24;116(1):102. doi: 10.1007/s00223-025-01413-6.
3
Recent advances in GTR scaffolds.
Bioinformation. 2022 Dec 31;18(12):1181-1185. doi: 10.6026/973206300181181. eCollection 2022.
5
Three-Dimensional Impression of Biomaterials for Alveolar Graft: Scoping Review.
J Funct Biomater. 2023 Jan 29;14(2):76. doi: 10.3390/jfb14020076.
7
Low-Intensity Pulsed Ultrasound Promotes Osteogenic Potential of iPSC-Derived MSCs but Fails to Simplify the iPSC-EB-MSC Differentiation Process.
Front Bioeng Biotechnol. 2022 May 12;10:841778. doi: 10.3389/fbioe.2022.841778. eCollection 2022.
10
Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells.
Cell Commun Signal. 2019 Aug 19;17(1):98. doi: 10.1186/s12964-019-0414-7.

本文引用的文献

1
Tissue engineering bone-ligament complexes using fiber-guiding scaffolds.
Biomaterials. 2012 Jan;33(1):137-45. doi: 10.1016/j.biomaterials.2011.09.057. Epub 2011 Oct 10.
2
Nanofibrous scaffolds for dental and craniofacial applications.
J Dent Res. 2012 Mar;91(3):227-34. doi: 10.1177/0022034511417441. Epub 2011 Aug 9.
4
Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface.
Nanotechnology. 2006 Feb 28;17(4):1123-7. doi: 10.1088/0957-4484/17/4/046. Epub 2006 Feb 2.
5
Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review.
Injury. 2011 Sep;42 Suppl 2:S3-15. doi: 10.1016/j.injury.2011.06.015. Epub 2011 Jun 25.
6
Dental pulp stem cells, niches, and notch signaling in tooth injury.
Adv Dent Res. 2011 Jul;23(3):275-9. doi: 10.1177/0022034511405386.
8
Bone regeneration: current concepts and future directions.
BMC Med. 2011 May 31;9:66. doi: 10.1186/1741-7015-9-66.
10
Mesenchymal stem cells.
Cell Transplant. 2011;20(1):5-14. doi: 10.3727/096368910X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验