Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
Biomaterials. 2012 Jan;33(1):137-45. doi: 10.1016/j.biomaterials.2011.09.057. Epub 2011 Oct 10.
Regeneration of bone-ligament complexes destroyed due to disease or injury is a clinical challenge due to complex topologies and tissue integration required for functional restoration. Attempts to reconstruct soft-hard tissue interfaces have met with limited clinical success. In this investigation, we manufactured biomimetic fiber-guiding scaffolds using solid free-form fabrication methods that custom fit complex anatomical defects to guide functionally-oriented ligamentous fibers in vivo. Compared to traditional, amorphous or random-porous polymeric scaffolds, the use of perpendicularly oriented micro-channels provides better guidance for cellular processes anchoring ligaments between two distinct mineralized structures. These structures withstood biomechanical loading to restore large osseous defects. Cell transplantation using hybrid scaffolding constructs with guidance channels resulted in predictable oriented fiber architecture, greater control of tissue infiltration, and better organization of ligament interface than random scaffold architectures. These findings demonstrate that fiber-guiding scaffolds drive neogenesis of triphasic bone-ligament integration for a variety of clinical scenarios.
由于疾病或损伤而破坏的骨-韧带复合体的再生是一个临床挑战,因为功能恢复需要复杂的拓扑结构和组织整合。尝试重建软-硬组织界面的方法仅取得了有限的临床成功。在这项研究中,我们使用立体光固化成型方法制造仿生纤维引导支架,该支架可根据复杂的解剖缺陷定制,以引导体内具有功能取向的韧带纤维。与传统的无定形或随机多孔聚合物支架相比,垂直定向的微通道为锚定在两个不同矿化结构之间的韧带的细胞过程提供了更好的指导。这些结构承受了生物力学负载,以恢复大的骨质缺损。使用具有导向通道的混合支架构建体进行细胞移植可导致可预测的定向纤维结构、更好地控制组织渗透以及更好地组织韧带界面,优于随机支架结构。这些发现表明,纤维引导支架可促进各种临床情况下的三相骨-韧带整合的新生。