Suppr超能文献

采用纤维引导支架构建组织工程化的骨-韧带复合体。

Tissue engineering bone-ligament complexes using fiber-guiding scaffolds.

机构信息

Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.

出版信息

Biomaterials. 2012 Jan;33(1):137-45. doi: 10.1016/j.biomaterials.2011.09.057. Epub 2011 Oct 10.

Abstract

Regeneration of bone-ligament complexes destroyed due to disease or injury is a clinical challenge due to complex topologies and tissue integration required for functional restoration. Attempts to reconstruct soft-hard tissue interfaces have met with limited clinical success. In this investigation, we manufactured biomimetic fiber-guiding scaffolds using solid free-form fabrication methods that custom fit complex anatomical defects to guide functionally-oriented ligamentous fibers in vivo. Compared to traditional, amorphous or random-porous polymeric scaffolds, the use of perpendicularly oriented micro-channels provides better guidance for cellular processes anchoring ligaments between two distinct mineralized structures. These structures withstood biomechanical loading to restore large osseous defects. Cell transplantation using hybrid scaffolding constructs with guidance channels resulted in predictable oriented fiber architecture, greater control of tissue infiltration, and better organization of ligament interface than random scaffold architectures. These findings demonstrate that fiber-guiding scaffolds drive neogenesis of triphasic bone-ligament integration for a variety of clinical scenarios.

摘要

由于疾病或损伤而破坏的骨-韧带复合体的再生是一个临床挑战,因为功能恢复需要复杂的拓扑结构和组织整合。尝试重建软-硬组织界面的方法仅取得了有限的临床成功。在这项研究中,我们使用立体光固化成型方法制造仿生纤维引导支架,该支架可根据复杂的解剖缺陷定制,以引导体内具有功能取向的韧带纤维。与传统的无定形或随机多孔聚合物支架相比,垂直定向的微通道为锚定在两个不同矿化结构之间的韧带的细胞过程提供了更好的指导。这些结构承受了生物力学负载,以恢复大的骨质缺损。使用具有导向通道的混合支架构建体进行细胞移植可导致可预测的定向纤维结构、更好地控制组织渗透以及更好地组织韧带界面,优于随机支架结构。这些发现表明,纤维引导支架可促进各种临床情况下的三相骨-韧带整合的新生。

相似文献

1
Tissue engineering bone-ligament complexes using fiber-guiding scaffolds.
Biomaterials. 2012 Jan;33(1):137-45. doi: 10.1016/j.biomaterials.2011.09.057. Epub 2011 Oct 10.
2
Melt electrowriting scaffolds with fibre-guiding features for periodontal attachment.
Acta Biomater. 2024 May;180:337-357. doi: 10.1016/j.actbio.2024.04.006. Epub 2024 Apr 5.
3
Spatiotemporally controlled microchannels of periodontal mimic scaffolds.
J Dent Res. 2014 Dec;93(12):1304-12. doi: 10.1177/0022034514550716. Epub 2014 Sep 11.
4
Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces.
Biomaterials. 2010 Aug;31(23):5945-52. doi: 10.1016/j.biomaterials.2010.04.027. Epub 2010 May 14.
5
3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.
Int J Mol Sci. 2017 Sep 8;18(9):1927. doi: 10.3390/ijms18091927.
6
In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:525-8. doi: 10.1109/IEMBS.2006.259296.
8
Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets.
J Dent Res. 2019 Jun;98(6):673-681. doi: 10.1177/0022034519837967. Epub 2019 Apr 10.
10
Fibre-guiding biphasic scaffold for perpendicular periodontal ligament attachment.
Acta Biomater. 2022 Sep 15;150:221-237. doi: 10.1016/j.actbio.2022.07.023. Epub 2022 Jul 16.

引用本文的文献

2
Bioprinting techniques for regeneration of oral and craniofacial tissues: Current advances and future prospects.
J Oral Biol Craniofac Res. 2025 Mar-Apr;15(2):331-346. doi: 10.1016/j.jobcr.2025.01.019. Epub 2025 Feb 12.
3
Temporal and spatial expression analysis of periostin in mice periodontitis model.
Hua Xi Kou Qiang Yi Xue Za Zhi. 2024 Jun 1;42(3):286-295. doi: 10.7518/hxkq.2024.2023336.
5
A new hydroxyapatite-alginate-gelatin biocomposite favor bone regeneration in a critical-sized calvarial defect model.
Braz Dent J. 2024 May 10;35:e245461. doi: 10.1590/0103-6440202405461. eCollection 2024.
6
Biofabrication Strategies for Oral Soft Tissue Regeneration.
Adv Healthc Mater. 2024 Jul;13(18):e2304537. doi: 10.1002/adhm.202304537. Epub 2024 Apr 11.
7
The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges.
Front Bioeng Biotechnol. 2024 Feb 22;12:1356580. doi: 10.3389/fbioe.2024.1356580. eCollection 2024.
10
Three-dimensional-printed scaffolds for periodontal regeneration: A systematic review.
J Indian Soc Periodontol. 2023 Sep-Oct;27(5):451-460. doi: 10.4103/jisp.jisp_350_22. Epub 2023 Sep 1.

本文引用的文献

1
Periodontal regeneration: a challenge for the tissue engineer?
Proc Inst Mech Eng H. 2010 Dec;224(12):1345-58. doi: 10.1243/09544119JEIM820.
2
Thermodynamic underpinnings of cell alignment on controlled topographies.
Adv Mater. 2011 Jan 18;23(3):421-5. doi: 10.1002/adma.201001757. Epub 2010 Aug 17.
3
4
A review on endogenous regenerative technology in periodontal regenerative medicine.
Biomaterials. 2010 Nov;31(31):7892-927. doi: 10.1016/j.biomaterials.2010.07.019. Epub 2010 Aug 4.
5
Regeneration and orthotopic transplantation of a bioartificial lung.
Nat Med. 2010 Aug;16(8):927-33. doi: 10.1038/nm.2193. Epub 2010 Jul 13.
7
Periodontitis: a polymicrobial disruption of host homeostasis.
Nat Rev Microbiol. 2010 Jul;8(7):481-90. doi: 10.1038/nrmicro2337.
8
Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces.
Biomaterials. 2010 Aug;31(23):5945-52. doi: 10.1016/j.biomaterials.2010.04.027. Epub 2010 May 14.
9
Engineering organs.
Curr Opin Biotechnol. 2009 Oct;20(5):575-92. doi: 10.1016/j.copbio.2009.10.003. Epub 2009 Nov 5.
10
Engineering anatomically shaped human bone grafts.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3299-304. doi: 10.1073/pnas.0905439106. Epub 2009 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验