Suppr超能文献

一种用于评估驾驶适能的药物分类的欧洲方法:DRUID 项目的结果。

A European approach to categorizing medicines for fitness to drive: outcomes of the DRUID project.

机构信息

Department of Pharmacotherapy and Pharmaceutical Care, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.

出版信息

Br J Clin Pharmacol. 2012 Dec;74(6):920-31. doi: 10.1111/j.1365-2125.2012.04279.x.

Abstract

AIMS

To illustrate (i) the criteria and the development of the DRUID categorization system, (ii) the number of medicines that have currently been categorized, (iii) the added value of the DRUID categorization system and (iv) the next steps in the implementation of the DRUID system.

METHODS

The development of the DRUID categorization system was based on several criteria. The following steps were considered: (i) conditions of use of the medicine, (ii) pharmacodynamic and pharmacokinetic data, (iii) pharmacovigilance data, including prevalence of undesirable effects, (iv) experimental and epidemiological data, (v) additional data derived from the patient information leaflet, existing categorization systems and (vi) final categorization. DRUID proposed four tiered categories for medicines and driving.

RESULTS

In total, 3054 medicines were reviewed and over 1541 medicines were categorized (the rest were no longer on the EU market). Nearly half of the 1541 medicines were categorized 0 (no or negligible influence on fitness to drive), about 26% were placed in category I (minor influence on fitness to drive) and 17% were categorized as II or III (moderate or severe influence on fitness to drive).

CONCLUSIONS

The current DRUID categorization system established and defined standardized and harmonized criteria to categorize commonly used medications, based on their influence on fitness to drive. Further efforts are needed to implement the DRUID categorization system at a European level and further activities should be undertaken in order to reinforce the awareness of health care professionals and patients on the effects of medicines on fitness to drive.

摘要

目的

(i)说明 DRUID 分类系统的标准和制定过程,(ii)目前已分类药物的数量,(iii)DRUID 分类系统的附加值,以及(iv)DRUID 系统实施的下一步计划。

方法

DRUID 分类系统的制定基于若干标准。考虑了以下步骤:(i)药物使用条件,(ii)药效学和药代动力学数据,(iii)药物警戒数据,包括不良反应的发生率,(iv)实验和流行病学数据,(v)来自患者信息传单、现有分类系统和(vi)最终分类的其他数据。DRUID 为药物和驾驶能力提出了四个分层类别。

结果

总共审查了 3054 种药物,对超过 1541 种药物进行了分类(其余药物已不在欧盟市场上)。在 1541 种分类药物中,近一半被归类为 0 类(对驾驶能力无或可忽略影响),约 26%归类为 I 类(对驾驶能力有轻微影响),17%归类为 II 类或 III 类(对驾驶能力有中度或严重影响)。

结论

目前的 DRUID 分类系统根据药物对驾驶能力的影响,建立并定义了标准化和协调的标准,对常用药物进行分类。需要进一步努力在欧洲层面实施 DRUID 分类系统,并开展进一步的活动,以提高医疗保健专业人员和患者对药物对驾驶能力影响的认识。

相似文献

4
Parkinson's disease, antiparkinson medicines, and driving.帕金森病、抗帕金森药物与驾驶
Expert Rev Neurother. 2016 Sep;16(9):1023-32. doi: 10.1080/14737175.2016.1218278. Epub 2016 Aug 8.

引用本文的文献

1
[Pharmaceutical interventions in the new medicine service].
Farm Comunitarios. 2025 Jun 18;17(3):17-25. doi: 10.33620/FC.2173-9218.(2025).19. eCollection 2025 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验