Department of Chemistry, University of Calgary, University Drive 2500, Calgary, Alberta T2N 1N4, Canada.
J Chem Phys. 2012 Mar 28;136(12):124107. doi: 10.1063/1.3696967.
We present here the implementation of a self-consistent approach to the calculation of excitation energies within regular Kohn-Sham density functional theory. The method is based on the n-order constricted variational density functional theory (CV(n)-DFT) [T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wang, J. Chem. Phys. 130, 154102 (2009)] and its self-consistent formulation (SCF-CV(∞)-DFT) [J. Cullen, M. Krykunov, and T. Ziegler, Chem. Phys. 391, 11 (2011)]. A full account is given of the way in which SCF-CV(∞)-DFT is implemented. The SCF-CV(∞)-DFT scheme is further applied to transitions from occupied π orbitals to virtual π(∗) orbitals. The same series of transitions has been studied previously by high-level ab initio methods. We compare here the performance of SCF-CV(∞)-DFT to that of time dependent density functional theory (TD-DFT), CV(n)-DFT and ΔSCF-DFT, with the ab initio results as a benchmark standard. It is finally demonstrated how adiabatic TD-DFT and ΔSCF-DFT are related through different approximations to SCF-CV(∞)-DFT.
我们在此介绍了一种在正则 Kohn-Sham 密度泛函理论中计算激发能的自洽方法的实现。该方法基于 n 阶约束变分密度泛函理论(CV(n)-DFT)[T. Ziegler、M. Seth、M. Krykunov、J. Autschbach 和 F. Wang,J. Chem. Phys. 130,154102(2009)]及其自洽形式(SCF-CV(∞)-DFT)[J. Cullen、M. Krykunov 和 T. Ziegler,Chem. Phys. 391,11(2011)]。本文详细介绍了 SCF-CV(∞)-DFT 的实现方式。进一步将 SCF-CV(∞)-DFT 方案应用于从占据的π轨道到虚拟的π(∗)轨道的跃迁。先前已经使用高水平的从头算方法研究了相同的跃迁系列。我们在这里将 SCF-CV(∞)-DFT 的性能与时间相关密度泛函理论(TD-DFT)、CV(n)-DFT 和 ΔSCF-DFT 进行了比较,以从头算结果作为基准标准。最后,演示了绝热 TD-DFT 和 ΔSCF-DFT 通过对 SCF-CV(∞)-DFT 的不同近似是如何相关的。