Suppr超能文献

纳米氧化铁簇:核组成对结构、生物相容性和细胞标记效率的影响。

Nanoclusters of iron oxide: effect of core composition on structure, biocompatibility, and cell labeling efficacy.

机构信息

Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht , Utrecht, The Netherlands.

出版信息

Bioconjug Chem. 2012 May 16;23(5):941-50. doi: 10.1021/bc200543k. Epub 2012 May 3.

Abstract

Inorganic nanocrystals have a variety of applications in medicine. They may serve as contrast agents, therapeutics, and for in vitro diagnostics. Frequently, the synthesis route yields hydrophobically capped nanocrystals, which necessitates their subsequent coating to render a water-soluble and biocompatible probe. Biocompatibility is crucial for cellular imaging applications, which require large quantities of diagnostically active nanoparticles to be loaded into cells. We have previously reported the design and synthesis of a fluorescent and magnetic resonance imaging-detectable core-shell nanoparticle that encapsulates hydrophobically coated iron oxide nanocrystals. The core of soybean oil and iron oxide is covered by a shell mixture of phospholipids, some of which contained polyethylene glycol. Despite the biocompatibility of these components, we hypothesize that we can improve this formulation with respect to in vitro toxicity. To this aim, we measured the effect of six different core compositions on nanoparticle structure, cell labeling efficacy, and cell viability, as well as cell tracking potential. We methodically investigated the causes of toxicity and conclude that, even when combining biocompatible materials, the resulting formulation is not guaranteed to be biocompatible.

摘要

无机纳米晶体在医学中有多种应用。它们可以作为对比剂、治疗剂和用于体外诊断。通常,合成路线会产生疏水性封端的纳米晶体,这需要对其进行后续涂层处理,以赋予水溶性和生物相容性的探针。生物相容性对于细胞成像应用至关重要,这些应用需要将大量具有诊断活性的纳米颗粒加载到细胞中。我们之前已经报道了设计和合成一种荧光和磁共振成像可检测的核壳纳米颗粒,该颗粒封装了疏水性包覆的氧化铁纳米晶体。大豆油和氧化铁的核心被磷脂混合物覆盖,其中一些磷脂含有聚乙二醇。尽管这些成分具有生物相容性,但我们假设可以提高这种配方的体外毒性。为此,我们测量了六种不同核心成分对纳米颗粒结构、细胞标记效率和细胞活力以及细胞跟踪潜力的影响。我们系统地研究了毒性的原因,并得出结论,即使组合使用生物相容性材料,也不能保证所得到的配方具有生物相容性。

相似文献

1
Nanoclusters of iron oxide: effect of core composition on structure, biocompatibility, and cell labeling efficacy.
Bioconjug Chem. 2012 May 16;23(5):941-50. doi: 10.1021/bc200543k. Epub 2012 May 3.
2
Toxicity of iron oxide nanoparticles: Size and coating effects.
J Biochem Mol Toxicol. 2018 Dec;32(12):e22225. doi: 10.1002/jbt.22225. Epub 2018 Oct 5.
3
Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe.
Pharm Res. 2014 Dec;31(12):3371-8. doi: 10.1007/s11095-014-1426-z. Epub 2014 May 31.
6
Cell toxicity of superparamagnetic iron oxide nanoparticles.
J Colloid Interface Sci. 2009 Aug 15;336(2):510-8. doi: 10.1016/j.jcis.2009.04.046. Epub 2009 Apr 22.
7
Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers.
Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110262. doi: 10.1016/j.msec.2019.110262. Epub 2019 Oct 11.
9
Multifunctional PEGylated nanoclusters for biomedical applications.
Nanoscale. 2013 Jul 7;5(13):5994-6005. doi: 10.1039/c3nr00774j. Epub 2013 May 28.
10
One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.
Mater Sci Eng C Mater Biol Appl. 2014 Aug 1;41:161-7. doi: 10.1016/j.msec.2014.04.041. Epub 2014 Apr 28.

引用本文的文献

1
Histochemistry for nanomedicine: Novelty in tradition.
Eur J Histochem. 2021 Dec 27;65(4):3376. doi: 10.4081/ejh.2021.3376.
3
Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption.
ACS Nano. 2019 May 28;13(5):4960-4971. doi: 10.1021/acsnano.8b08702. Epub 2019 Jan 22.
4
Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles.
J Control Release. 2017 Aug 28;260:142-153. doi: 10.1016/j.jconrel.2017.06.005. Epub 2017 Jun 8.
5
Nanoparticles and clinically applicable cell tracking.
Br J Radiol. 2015 Oct;88(1054):20150375. doi: 10.1259/bjr.20150375. Epub 2015 Aug 7.
6
Membrane mimetic surface functionalization of nanoparticles: methods and applications.
Adv Colloid Interface Sci. 2013 Sep;197-198:68-84. doi: 10.1016/j.cis.2013.04.003. Epub 2013 May 2.
7
Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality.
NMR Biomed. 2013 Jul;26(7):766-80. doi: 10.1002/nbm.2909. Epub 2013 Jan 10.

本文引用的文献

1
Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer.
ACS Nano. 2011 Jun 28;5(6):4422-33. doi: 10.1021/nn103336a. Epub 2011 May 25.
2
A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver.
Bioconjug Chem. 2011 Mar 16;22(3):353-61. doi: 10.1021/bc1003179. Epub 2011 Mar 1.
3
Micro-NMR for rapid molecular analysis of human tumor samples.
Sci Transl Med. 2011 Feb 23;3(71):71ra16. doi: 10.1126/scitranslmed.3002048.
4
Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery.
Nano Lett. 2011 Mar 9;11(3):1208-14. doi: 10.1021/nl1041947. Epub 2011 Feb 14.
5
Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling.
Biomaterials. 2011 Jan;32(1):195-205. doi: 10.1016/j.biomaterials.2010.08.075. Epub 2010 Sep 22.
6
Chemistry and biochemistry of lipid peroxidation products.
Free Radic Res. 2010 Oct;44(10):1098-124. doi: 10.3109/10715762.2010.498477.
7
Polymer particle shape independently influences binding and internalization by macrophages.
J Control Release. 2010 Nov 1;147(3):408-12. doi: 10.1016/j.jconrel.2010.07.116. Epub 2010 Aug 5.
8
Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles.
Radiology. 2010 Sep;256(3):774-82. doi: 10.1148/radiol.10092473. Epub 2010 Jul 28.
9
Effect of surface properties on nanoparticle-cell interactions.
Small. 2010 Jan;6(1):12-21. doi: 10.1002/smll.200901158.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验