Suppr超能文献

一种用于基于CT的高剂量率近距离放射治疗的新型CT前列腺分割方法。

A New CT Prostate Segmentation for CT-Based HDR Brachytherapy.

作者信息

Yang Xiaofeng, Rossi Peter, Ogunleye Tomi, Jani Ashesh B, Curran Walter J, Liu Tian

机构信息

Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322.

出版信息

Proc SPIE Int Soc Opt Eng. 2014;9036:90362K. doi: 10.1117/12.2043695.

Abstract

High-dose-rate (HDR) brachytherapy has become a popular treatment modality for localized prostate cancer. Prostate HDR treatment involves placing 10 to 20 catheters (needles) into the prostate gland, and then delivering radiation dose to the cancerous regions through these catheters. These catheters are often inserted with transrectal ultrasound (TRUS) guidance and the HDR treatment plan is based on the CT images. The main challenge for CT-based HDR planning is to accurately segment prostate volume in CT images due to the poor soft tissue contrast and additional artifacts introduced by the catheters. To overcome these limitations, we propose a novel approach to segment the prostate in CT images through TRUS-CT deformable registration based on the catheter locations. In this approach, the HDR catheters are reconstructed from the intra-operative TRUS and planning CT images, and then used as landmarks for the TRUS-CT image registration. The prostate contour generated from the TRUS images captured during the ultrasound-guided HDR procedure was used to segment the prostate on the CT images through deformable registration. We conducted two studies. A prostate-phantom study demonstrated a submillimeter accuracy of our method. A pilot study of 5 prostate-cancer patients was conducted to further test its clinical feasibility. All patients had 3 gold markers implanted in the prostate that were used to evaluate the registration accuracy, as well as previous diagnostic MR images that were used as the gold standard to assess the prostate segmentation. For the 5 patients, the mean gold-marker displacement was 1.2 mm; the prostate volume difference between our approach and the MRI was 7.2%, and the Dice volume overlap was over 91%. Our proposed method could improve prostate delineation, enable accurate dose planning and delivery, and potentially enhance prostate HDR treatment outcome.

摘要

高剂量率(HDR)近距离放射治疗已成为局限性前列腺癌的一种常用治疗方式。前列腺HDR治疗包括将10至20根导管(针)置入前列腺,然后通过这些导管向癌区输送辐射剂量。这些导管通常在经直肠超声(TRUS)引导下插入,HDR治疗计划基于CT图像。基于CT的HDR计划的主要挑战在于,由于软组织对比度差以及导管引入的额外伪影,要在CT图像中准确分割前列腺体积。为克服这些限制,我们提出一种基于导管位置通过TRUS-CT可变形配准在CT图像中分割前列腺的新方法。在这种方法中,从术中TRUS和计划CT图像重建HDR导管,然后将其用作TRUS-CT图像配准的地标。在超声引导的HDR程序中采集的TRUS图像生成的前列腺轮廓,通过可变形配准用于在CT图像上分割前列腺。我们进行了两项研究。一项前列腺模型研究证明了我们方法的亚毫米级精度。对5例前列腺癌患者进行了一项初步研究,以进一步测试其临床可行性。所有患者在前列腺中植入了3个金标,用于评估配准精度,以及将先前的诊断性MR图像用作评估前列腺分割的金标准。对于这5例患者,金标的平均位移为1.2毫米;我们的方法与MRI之间的前列腺体积差异为7.2%,骰子体积重叠率超过91%。我们提出的方法可以改善前列腺轮廓描绘,实现准确的剂量规划和输送,并可能提高前列腺HDR治疗效果。

相似文献

1
A New CT Prostate Segmentation for CT-Based HDR Brachytherapy.
Proc SPIE Int Soc Opt Eng. 2014;9036:90362K. doi: 10.1117/12.2043695.
4
Multi-needle Localization with Attention U-Net in US-guided HDR Prostate Brachytherapy.
Med Phys. 2020 Jul;47(7):2735-2745. doi: 10.1002/mp.14128. Epub 2020 Apr 3.
5
MRI-TRUS registration methodology for TRUS-guided HDR prostate brachytherapy.
J Appl Clin Med Phys. 2021 Aug;22(8):284-294. doi: 10.1002/acm2.13292. Epub 2021 Jul 28.
7
High-dose-rate prostate brachytherapy based on registered transrectal ultrasound and in-room cone-beam CT images.
Brachytherapy. 2014 Mar-Apr;13(2):128-36. doi: 10.1016/j.brachy.2013.08.001. Epub 2013 Sep 14.
8
MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy.
Med Phys. 2021 Jun;48(6):3074-3083. doi: 10.1002/mp.14901. Epub 2021 May 14.
10
Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy.
Brachytherapy. 2019 Jan-Feb;18(1):95-102. doi: 10.1016/j.brachy.2018.08.006. Epub 2018 Oct 2.

引用本文的文献

1
A 3D Neurovascular Bundles Segmentation Method based on MR-TRUS Deformable Registration.
Proc SPIE Int Soc Opt Eng. 2015 Feb;9413. doi: 10.1117/12.2077828. Epub 2015 Mar 20.
2
A MR-TRUS Registration Method for Ultrasound-Guided Prostate Interventions.
Proc SPIE Int Soc Opt Eng. 2015 Feb;9415. doi: 10.1117/12.2077825. Epub 2015 Mar 18.

本文引用的文献

2
3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning.
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8316:83162O. doi: 10.1117/12.912188.
4
Sparse patch-based label propagation for accurate prostate localization in CT images.
IEEE Trans Med Imaging. 2013 Feb;32(2):419-34. doi: 10.1109/TMI.2012.2230018. Epub 2012 Nov 27.
5
Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior.
Proc SPIE Int Soc Opt Eng. 2011;7964. doi: 10.1117/12.877888. Epub 2011 Mar 1.
8
Learning image context for segmentation of the prostate in CT-guided radiotherapy.
Phys Med Biol. 2012 Mar 7;57(5):1283-308. doi: 10.1088/0031-9155/57/5/1283. Epub 2012 Feb 17.
10
Adaptively learning local shape statistics for prostate segmentation in ultrasound.
IEEE Trans Biomed Eng. 2011 Mar;58(3):633-41. doi: 10.1109/TBME.2010.2094195. Epub 2010 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验