Suppr超能文献

使用CompuCell3D对组织进行多尺度建模。

Multi-scale modeling of tissues using CompuCell3D.

作者信息

Swat Maciej H, Thomas Gilberto L, Belmonte Julio M, Shirinifard Abbas, Hmeljak Dimitrij, Glazier James A

机构信息

Department of Physics, Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA.

出版信息

Methods Cell Biol. 2012;110:325-66. doi: 10.1016/B978-0-12-388403-9.00013-8.

Abstract

The study of how cells interact to produce tissue development, homeostasis, or diseases was, until recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis, secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier-Graner-Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics. We also present a walkthrough of four biological models and their associated simulations that demonstrate the capabilities of the GGH and CompuCell3D.

摘要

直到最近,关于细胞如何相互作用以产生组织发育、体内平衡或疾病的研究几乎完全是实验性的。现在,从相对简单的细胞自动机到复杂的浸入边界和有限元机制模型等多细胞计算机模拟方法,使得基于生物学观察到的细胞行为和相互作用(如运动、黏附、生长、死亡、有丝分裂、化学物质分泌、趋化性等),在计算机上对组织尺度的多细胞现象进行研究成为可能。本教程介绍基于格点的格拉齐尔 - 格拉纳 - 霍赫韦格(GGH)蒙特卡洛多细胞建模以及基于GGH的开源CompuCell3D模拟环境,该环境允许在组织形成及后续动态变化的背景下,快速直观地对细胞和多细胞行为进行建模与模拟。我们还展示了四个生物学模型及其相关模拟的演练过程,这些演练展示了GGH和CompuCell3D的功能。

相似文献

1
Multi-scale modeling of tissues using CompuCell3D.
Methods Cell Biol. 2012;110:325-66. doi: 10.1016/B978-0-12-388403-9.00013-8.
3
Multicell simulations of development and disease using the CompuCell3D simulation environment.
Methods Mol Biol. 2009;500:361-428. doi: 10.1007/978-1-59745-525-1_13.
5
Space-Limited Mitosis in the Glazier-Graner-Hogeweg Model.
Bull Math Biol. 2017 Jan;79(1):1-20. doi: 10.1007/s11538-016-0204-y. Epub 2016 Nov 1.
7
Cell-based multi-parametric model of cleft progression during submandibular salivary gland branching morphogenesis.
PLoS Comput Biol. 2013;9(11):e1003319. doi: 10.1371/journal.pcbi.1003319. Epub 2013 Nov 21.
8
A computational model predicting disruption of blood vessel development.
PLoS Comput Biol. 2013 Apr;9(4):e1002996. doi: 10.1371/journal.pcbi.1002996. Epub 2013 Apr 4.
9
Computer simulations of cell sorting due to differential adhesion.
PLoS One. 2011;6(10):e24999. doi: 10.1371/journal.pone.0024999. Epub 2011 Oct 18.
10
Computer simulation of cellular patterning within the Drosophila pupal eye.
PLoS Comput Biol. 2010 Jul 1;6(7):e1000841. doi: 10.1371/journal.pcbi.1000841.

引用本文的文献

1
Computational modeling and simulation in oncology.
Clin Transl Med. 2025 Sep;15(9):e70456. doi: 10.1002/ctm2.70456.
2
Fluid-derived lattices for unbiased modeling of bacterial colony growth.
PLoS One. 2025 Aug 28;20(8):e0330491. doi: 10.1371/journal.pone.0330491. eCollection 2025.
3
V-Cornea: A computational model of corneal epithelium homeostasis, injury, and recovery.
bioRxiv. 2025 Aug 14:2025.08.11.669602. doi: 10.1101/2025.08.11.669602.
4
Temporal dynamics of angiogenesis: the emerging role of mechanoregulated pathways.
Biochem Soc Trans. 2025 Aug 29;53(4):909-923. doi: 10.1042/BST20253048.
5
Radiobiological Modeling with Monte Carlo Tools - Simulating Cellular Responses to Ionizing Radiation.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251350909. doi: 10.1177/15330338251350909. Epub 2025 Jul 17.
7
Personalizing computational models to construct medical digital twins.
J R Soc Interface. 2025 Jul;22(228):20250055. doi: 10.1098/rsif.2025.0055. Epub 2025 Jul 2.
9
Review of the geometrical developments in GEANT4-DNA: From a biological perspective.
Rev Phys. 2025 Dec;13. doi: 10.1016/j.revip.2025.100110. Epub 2025 Feb 11.
10
Galvanotactic directionality of cell groups depends on group size.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2416440122. doi: 10.1073/pnas.2416440122. Epub 2025 May 20.

本文引用的文献

1
Modelling Morphogenesis: From Single Cells to Crawling Slugs.
J Theor Biol. 1997 Feb 7;184(3):229-235. doi: 10.1006/jtbi.1996.0237.
2
Computer simulations of cell sorting due to differential adhesion.
PLoS One. 2011;6(10):e24999. doi: 10.1371/journal.pone.0024999. Epub 2011 Oct 18.
3
A multi-cell, multi-scale model of vertebrate segmentation and somite formation.
PLoS Comput Biol. 2011 Oct;7(10):e1002155. doi: 10.1371/journal.pcbi.1002155. Epub 2011 Oct 6.
4
3D multi-cell simulation of tumor growth and angiogenesis.
PLoS One. 2009 Oct 16;4(10):e7190. doi: 10.1371/journal.pone.0007190.
5
Dynamic mechanisms of blood vessel growth.
Nonlinearity. 2006;19(1):C1-C10. doi: 10.1088/0951-7715/19/1/000.
7
Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.
PLoS Comput Biol. 2008 Sep 19;4(9):e1000163. doi: 10.1371/journal.pcbi.1000163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验