Suppr超能文献

使用CompuCell3D对组织进行多尺度建模。

Multi-scale modeling of tissues using CompuCell3D.

作者信息

Swat Maciej H, Thomas Gilberto L, Belmonte Julio M, Shirinifard Abbas, Hmeljak Dimitrij, Glazier James A

机构信息

Department of Physics, Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA.

出版信息

Methods Cell Biol. 2012;110:325-66. doi: 10.1016/B978-0-12-388403-9.00013-8.

Abstract

The study of how cells interact to produce tissue development, homeostasis, or diseases was, until recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis, secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier-Graner-Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics. We also present a walkthrough of four biological models and their associated simulations that demonstrate the capabilities of the GGH and CompuCell3D.

摘要

直到最近,关于细胞如何相互作用以产生组织发育、体内平衡或疾病的研究几乎完全是实验性的。现在,从相对简单的细胞自动机到复杂的浸入边界和有限元机制模型等多细胞计算机模拟方法,使得基于生物学观察到的细胞行为和相互作用(如运动、黏附、生长、死亡、有丝分裂、化学物质分泌、趋化性等),在计算机上对组织尺度的多细胞现象进行研究成为可能。本教程介绍基于格点的格拉齐尔 - 格拉纳 - 霍赫韦格(GGH)蒙特卡洛多细胞建模以及基于GGH的开源CompuCell3D模拟环境,该环境允许在组织形成及后续动态变化的背景下,快速直观地对细胞和多细胞行为进行建模与模拟。我们还展示了四个生物学模型及其相关模拟的演练过程,这些演练展示了GGH和CompuCell3D的功能。

相似文献

1
Multi-scale modeling of tissues using CompuCell3D.使用CompuCell3D对组织进行多尺度建模。
Methods Cell Biol. 2012;110:325-66. doi: 10.1016/B978-0-12-388403-9.00013-8.
5
8
A computational model predicting disruption of blood vessel development.一种预测血管发育中断的计算模型。
PLoS Comput Biol. 2013 Apr;9(4):e1002996. doi: 10.1371/journal.pcbi.1002996. Epub 2013 Apr 4.
9
Computer simulations of cell sorting due to differential adhesion.基于细胞黏附差异的细胞分选计算机模拟
PLoS One. 2011;6(10):e24999. doi: 10.1371/journal.pone.0024999. Epub 2011 Oct 18.

引用本文的文献

1
Computational modeling and simulation in oncology.肿瘤学中的计算建模与模拟
Clin Transl Med. 2025 Sep;15(9):e70456. doi: 10.1002/ctm2.70456.
2
Fluid-derived lattices for unbiased modeling of bacterial colony growth.用于细菌菌落生长无偏建模的流体衍生晶格
PLoS One. 2025 Aug 28;20(8):e0330491. doi: 10.1371/journal.pone.0330491. eCollection 2025.
7
Personalizing computational models to construct medical digital twins.个性化计算模型以构建医学数字孪生体。
J R Soc Interface. 2025 Jul;22(228):20250055. doi: 10.1098/rsif.2025.0055. Epub 2025 Jul 2.
10
Galvanotactic directionality of cell groups depends on group size.细胞群的电趋性方向性取决于群体大小。
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2416440122. doi: 10.1073/pnas.2416440122. Epub 2025 May 20.

本文引用的文献

2
Computer simulations of cell sorting due to differential adhesion.基于细胞黏附差异的细胞分选计算机模拟
PLoS One. 2011;6(10):e24999. doi: 10.1371/journal.pone.0024999. Epub 2011 Oct 18.
5
Dynamic mechanisms of blood vessel growth.血管生长的动态机制。
Nonlinearity. 2006;19(1):C1-C10. doi: 10.1088/0951-7715/19/1/000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验