Suppr超能文献

基于蛋白质-蛋白质相互作用网络预测人类基因的调控功能。

Prediction of human genes' regulatory functions based on proteinprotein interaction network.

作者信息

Gao Peng, Wang Qing-Ping, Chen Lei, Huang Tao

机构信息

Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China.

出版信息

Protein Pept Lett. 2012 Sep;19(9):910-6. doi: 10.2174/092986612802084528.

Abstract

In systems biology, regulatory pathway is one of the most important research areas. However, regulatory pathway is so complicated that we still poorly understand this system. On the other hand, with rapid accumulated information on different organisms, it becomes more and more possible to in-depth investigate regulatory pathway. To understand regulatory pathway well, figuring out the components of each pathway is the most important step. In this study, a network- based method was proposed to classify human genes into corresponding pathways. The information of protein-protein interactions retrieved from STRING was used to construct a network and jackknife test was employed to evaluate the method. As a result, the first order prediction accuracy was 87.91%, indicating that interactive proteins always have similar biological regulatory functions. By comparing the predicted results obtained from other methods based on blast and amino acid composition, respectively, it implies that our prediction method is quite promising that may provide an opportunity to understand this complicated pathway system well.

摘要

在系统生物学中,调控通路是最重要的研究领域之一。然而,调控通路非常复杂,以至于我们对这个系统仍然了解甚少。另一方面,随着不同生物体信息的快速积累,深入研究调控通路变得越来越有可能。为了更好地理解调控通路,弄清楚每条通路的组成部分是最重要的一步。在本研究中,提出了一种基于网络的方法将人类基因分类到相应的通路中。从STRING数据库检索到的蛋白质-蛋白质相互作用信息被用于构建网络,并采用留一法检验来评估该方法。结果表明,一阶预测准确率为87.91%,这表明相互作用的蛋白质通常具有相似的生物学调控功能。通过分别与基于blast和氨基酸组成的其他方法得到的预测结果进行比较,这意味着我们的预测方法很有前景,可能为深入理解这个复杂的通路系统提供一个契机。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验