Departments of Bioengineering and Chemistry, Rice University, Houston, TX 77005, USA.
Cancer Prev Res (Phila). 2012 May;5(5):706-16. doi: 10.1158/1940-6207.CAPR-11-0508. Epub 2012 Apr 9.
Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive, and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, and modular (programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multimodal and multimarker screening approaches. In the p-BNCs, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing, and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a three-dimensional microfluidic environment, the p-BNC operating variables (incubation times, flow rates, and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (inter- and intra-assay precision of 1.2% and 1.9% and limit of detection of 1.0 U/mL) was achieved on this minisensor ensemble. Furthermore, validation with sera of patients with ovarian cancer (n = 20) showed excellent correlation (R(2) = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise, and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics.
即时检测(POC)实施卵巢癌早期检测和筛查方法,通过早期干预可能提高生存率。目前的实验室局限的免疫分析仪具有较长的周转时间,并且通常与多重分析和 POC 实施不兼容。需要快速、敏感和可多重分析的 POC 诊断平台,与卵巢癌的有前途的早期检测方法兼容。为此,我们报告了可编程生物纳米芯片(p-BNC)的适应性,该芯片是用于 CA125 血清定量的集成、微流体和模块化(可编程)平台,CA125 是一种明显与多模态和多标志物筛查方法相关的生物标志物。在 p-BNC 中,从患病血清(Bio)中分离并评估 CA125,采用基于荧光的夹心免疫测定法,在定位在单独寻址孔(Chip)中的敏化琼脂糖微珠的纳米网(Nano)中完成,位于微流体模块中,能够集成多个样本、试剂和生物废物处理和处理步骤。筛选了与 CA125 上不同表位结合的抗体对。为了在三维微流体环境中有效地进行生物标志物的分离,p-BNC 的操作变量(孵育时间、流速和试剂浓度)进行了调整,以在 45 分钟内实现最佳分析性能。在这个迷你传感器组合上,具有较短的分析时间,可实现竞争性分析性能(批内和批间精度分别为 1.2%和 1.9%,检测限为 1.0 U/mL)。此外,用 20 例卵巢癌患者的血清进行验证,与金标准 ELISA 显示出极好的相关性(R² = 0.97)。基于为卵巢癌编程的新型微流体系统的集成能力,快速、精确和敏感的微型 p-BNC 系统显示出在卵巢癌诊断方面的巨大应用潜力。