State Key Lab of Superhard Materials, Jilin University, Changchun 130012, Peoples Republic of China.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6463-6. doi: 10.1073/pnas.1118168109. Epub 2012 Apr 6.
Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H(2) fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH(6) a body-centered cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H(2) of electrons donated by Ca forming an "H(4)" unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH(6). A superconducting critical temperature (T(c)) of 220-235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.
富氢化合物有望成为高温超导体在高压下。最近的理论氢化物结构实现高压超导主要由 H(2)片段组成。通过对不同氢含量的 Ca 氢化物进行系统的研究,我们发现,在 CaH(6)的化学计量比中,体心立方结构的氢形成了不寻常的“方钠石”笼,其中包含包封的 Ca,在压力超过 150 GPa 时稳定。这种结构的稳定性来自于两个 H(2)接受 Ca 提供的电子,形成一个“H(4)”单元作为构建三维方钠石笼的基础。这种独特的结构在带区中心存在部分占据的简并轨道。由此产生的动态 Jahn-Teller 效应有助于增强电子-声子耦合,导致 CaH(6)的超导性。从 Eliashberg 方程的解中得到的 150 GPa 时 220-235 K 的超导临界温度(T(c))是迄今为止所有研究的氢化物中最高的。