Suppr超能文献

在嗜盐古菌盐沼盐球菌中,果糖的降解涉及一种细菌型磷酸烯醇丙酮酸依赖的磷酸转移酶系统、果糖-1-磷酸激酶和 II 类果糖-1,6-二磷酸醛缩酶。

Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase.

机构信息

Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten, Kiel, Germany.

出版信息

J Bacteriol. 2012 Jun;194(12):3088-97. doi: 10.1128/JB.00200-12. Epub 2012 Apr 6.

Abstract

The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea.

摘要

嗜盐古菌盐沼盐球菌利用果糖作为唯一的碳源和能源。通过转录分析、缺失突变实验和酶特性分析,鉴定了参与果糖摄取和降解的基因和酶。在果糖生长过程中,HVO_1495 到 HVO_1499 基因簇作为一个共转录物高度上调,该基因簇编码 5 个细菌磷酸转移酶系统(PTS)成分酶 IIB(EIIB)、酶 I(EI)、组氨酸蛋白(HPr)、EIIA 和 EIIC 的同源物。HVO_1499 的框内缺失,命名为 ptfC(ptf 代表果糖磷酸转移酶系统),并编码假定的果糖特异性膜成分 EIIC,导致在果糖上的生长丧失,这种生长可以通过在 trans 中互补来恢复。HVO_1500(pfkB)和 HVO_1494(fba)的转录本(分别编码假定的果糖-1-磷酸激酶(1-PFK)和果糖-1,6-二磷酸醛缩酶(FBA))以及 1-PFK 和 FBA 活性在果糖生长的细胞中特异性上调。pfkB 和 fba 敲除突变体不能在果糖上生长,而在葡萄糖上的生长没有受到抑制,表明这两种酶都参与了果糖的分解代谢。同源过表达后获得的重组 1-PFK 和 FBA 的特性表明其具有功能性 1-PFK 和 II 型 FBA 的动力学特性。根据这些数据,我们得出结论,在 H. volcanii 中果糖的摄取涉及到一种果糖特异性 PTS,它通过果糖-1,6-二磷酸生成果糖-1-磷酸,进一步通过 1-PFK 和 FBA 转化为三磷酸糖。这是首次报道细菌样 PTS 和 II 型 FBA 在古菌糖代谢中的功能参与。

相似文献

3
4
GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00244-18. Print 2018 Sep 1.
6
Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii.
J Bacteriol. 2021 Mar 23;203(8). doi: 10.1128/JB.00690-20.

引用本文的文献

2
: a versatile model for studying archaeal biology.
J Bacteriol. 2025 Jun 24;207(6):e0006225. doi: 10.1128/jb.00062-25. Epub 2025 May 14.
3
Strategies of Environmental Adaptation in the Haloarchaeal Genera and .
Microorganisms. 2025 Mar 27;13(4):761. doi: 10.3390/microorganisms13040761.
4
a novel typing gene offering enhanced resolution for pandemic species.
Microbiol Spectr. 2025 Feb 4;13(2):e0110524. doi: 10.1128/spectrum.01105-24. Epub 2024 Dec 20.
6
Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.
J Ind Microbiol Biotechnol. 2024 Jan 9;51. doi: 10.1093/jimb/kuae020.
8
Discovery of a novel transcriptional regulator of sugar catabolism in archaea.
Mol Microbiol. 2023 Aug;120(2):224-240. doi: 10.1111/mmi.15114. Epub 2023 Jun 30.
9
Cellulose metabolism in halo(natrono)archaea: a comparative genomics study.
Front Microbiol. 2023 Jun 1;14:1112247. doi: 10.3389/fmicb.2023.1112247. eCollection 2023.
10
Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia.
ISME J. 2023 Jun;17(6):823-835. doi: 10.1038/s41396-023-01392-2. Epub 2023 Mar 10.

本文引用的文献

2
Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes.
PLoS One. 2011;6(5):e20237. doi: 10.1371/journal.pone.0020237. Epub 2011 May 25.
3
Overexpression and purification of halophilic proteins in Haloferax volcanii.
Bioeng Bugs. 2010 Jul-Aug;1(4):288-90. doi: 10.4161/bbug.1.4.11794. Epub 2010 Mar 17.
4
5
Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme.
Nature. 2010 Apr 15;464(7291):1077-81. doi: 10.1038/nature08884. Epub 2010 Mar 28.
6
The complete genome sequence of Haloferax volcanii DS2, a model archaeon.
PLoS One. 2010 Mar 19;5(3):e9605. doi: 10.1371/journal.pone.0009605.
7
Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii.
Appl Environ Microbiol. 2010 Mar;76(6):1759-69. doi: 10.1128/AEM.02670-09. Epub 2010 Jan 22.
8
D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.
J Biol Chem. 2009 Oct 2;284(40):27290-303. doi: 10.1074/jbc.M109.003814. Epub 2009 Jul 7.
9
Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms.
Contrib Microbiol. 2009;16:65-87. doi: 10.1159/000219373. Epub 2009 Jun 2.
10
Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants.
J Microbiol Methods. 2008 Oct;75(2):201-4. doi: 10.1016/j.mimet.2008.05.029. Epub 2008 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验