Suppr超能文献

肌动球蛋白网络中的主动收缩性。

Active contractility in actomyosin networks.

机构信息

Department of Physics, Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6446-51. doi: 10.1073/pnas.1204205109. Epub 2012 Apr 9.

Abstract

Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of cross-link concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations, we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters, including the contractility onset. Cooperative action of load-resisting motors in a force-percolating structure integrates local contraction/buckling events into a global contractile state via an active coarsening process, in contrast to the flow transition driven by uncorrelated kicks of susceptible motors.

摘要

收缩力对于涉及细胞形状变化和组织变形的许多发育过程至关重要。最近在重组成肌动球蛋白网络(收缩机械的主要成分)的实验中表明,活跃的收缩力发生在一个临界的马达浓度之上,并在交联浓度的窗口内。我们提出了一个微观动态模型,该模型包含了肌动球蛋白自组织的两个基本方面:单个肌动蛋白丝的不对称负载响应,以及模拟肌球蛋白诱导丝滑动的相关马达驱动事件。通过计算机模拟,我们研究了马达的浓度和敏感性如何有助于它们的集体行为,并与网络连接相互作用来调节宏观收缩性。我们的模型被证明可以捕捉收缩结构的形成和动力学,并与观察到的主动收缩性对微观参数的依赖性一致,包括收缩性开始。在力渗透结构中抵抗负载的马达的协同作用通过主动粗化过程将局部收缩/弯曲事件整合到全局收缩状态中,与由易感性马达的不相关踢动驱动的流动转变形成对比。

相似文献

1
Active contractility in actomyosin networks.肌动球蛋白网络中的主动收缩性。
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6446-51. doi: 10.1073/pnas.1204205109. Epub 2012 Apr 9.
2
Active multistage coarsening of actin networks driven by myosin motors.肌球蛋白马达驱动的肌动蛋白网络的主动多级粗化。
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.
3
Morphological Transformation and Force Generation of Active Cytoskeletal Networks.活性细胞骨架网络的形态转变与力的产生
PLoS Comput Biol. 2017 Jan 23;13(1):e1005277. doi: 10.1371/journal.pcbi.1005277. eCollection 2017 Jan.
6
Determinants of contractile forces generated in disorganized actomyosin bundles.无规则肌动球蛋白束产生收缩力的决定因素。
Biomech Model Mechanobiol. 2015 Apr;14(2):345-55. doi: 10.1007/s10237-014-0608-2. Epub 2014 Aug 8.
10
Power-stroke-driven actomyosin contractility.动力冲程驱动的肌动球蛋白收缩性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012708. doi: 10.1103/PhysRevE.89.012708. Epub 2014 Jan 13.

引用本文的文献

1
Morphological and Electrical Properties of Proteinoid-Actin Networks.类蛋白-肌动蛋白网络的形态学和电学性质
ACS Omega. 2025 Jan 27;10(5):4952-4977. doi: 10.1021/acsomega.4c10488. eCollection 2025 Feb 11.
2
Motorized chain models of the ideal chromosome.理想染色体的电动链式模型。
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2407077121. doi: 10.1073/pnas.2407077121. Epub 2024 Jul 2.
7
Physical mechanisms of platelet formation.血小板形成的物理机制。
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21841-21843. doi: 10.1073/pnas.2014390117. Epub 2020 Aug 11.
10
Rotation and propulsion in 3D active chiral droplets.三维活性手性液滴中的旋转和推进。
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22065-22070. doi: 10.1073/pnas.1910909116. Epub 2019 Oct 14.

本文引用的文献

1
Tuning cell shape change with contractile ratchets.通过收缩棘轮来调整细胞形状变化。
Curr Opin Genet Dev. 2011 Oct;21(5):671-9. doi: 10.1016/j.gde.2011.08.002. Epub 2011 Sep 3.
2
On the spontaneous collective motion of active matter.关于活性物质的自发集体运动。
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15184-9. doi: 10.1073/pnas.1112034108. Epub 2011 Aug 29.
4
Active multistage coarsening of actin networks driven by myosin motors.肌球蛋白马达驱动的肌动蛋白网络的主动多级粗化。
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.
7
Pulsation and stabilization: contractile forces that underlie morphogenesis.脉动和稳定:形态发生的基础收缩力。
Dev Biol. 2010 May 1;341(1):114-25. doi: 10.1016/j.ydbio.2009.10.031. Epub 2009 Oct 27.
8
An active biopolymer network controlled by molecular motors.由分子马达控制的活性生物聚合物网络。
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15192-7. doi: 10.1073/pnas.0903974106. Epub 2009 Aug 10.
9
The mechanics and fluctuation spectrum of active gels.活性凝胶的力学原理与波动谱
J Phys Chem B. 2009 Mar 26;113(12):3820-30. doi: 10.1021/jp808192w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验