Suppr超能文献

phn岛:一个编码多环芳烃分解代谢的新基因组岛。

The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons.

作者信息

Hickey William J, Chen Shicheng, Zhao Jiangchao

机构信息

O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin Madison, WI, USA.

出版信息

Front Microbiol. 2012 Apr 4;3:125. doi: 10.3389/fmicb.2012.00125. eCollection 2012.

Abstract

Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH), which are widespread environmental pollutants. At least six genotypes of PAH degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD) that initiates bacterial PAH metabolism. A given RHD genotype can be possessed by a variety of bacterial genera, suggesting horizontal gene transfer (HGT) is an important process for dissemination of PAH-degrading genes. But, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrading bacterium Delftia sp. Cs1-4, a representative of the phn(AFK2) RHD group. The phn(AFK2) genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present study, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI), now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkanoate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and >50 hypothetical proteins. The 50% G + C content of the phn gene cluster differed significantly from the 66.7% G + C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general.

摘要

细菌在多环芳烃(PAH)的生物降解中起着关键作用,多环芳烃是广泛存在的环境污染物。通过启动细菌PAH代谢的环羟基化双加氧酶(RHD)的系统发育,可以区分出至少六种PAH降解菌基因型。给定的RHD基因型可由多种细菌属拥有,这表明水平基因转移(HGT)是PAH降解基因传播的重要过程。但是,大多数RHD基因型的HGT机制尚不清楚。在此,我们报告了菲降解菌代尔夫特菌属Cs1-4的计算机模拟和功能分析,该菌是phn(AFK2) RHD组的代表。phn(AFK2)基因型在某些土壤和沉积物中的PAH降解菌群落中占主导地位,但到目前为止,它们的基因组生物学尚未得到探索。在本研究中,在一个约232 kb的新型基因组岛(GEI)上发现了整个菲分解代谢途径的基因,现在称为phn岛。这个GEI具有整合和接合元件的特征,其移动/稳定系统类似于SXT/R391型GEI。但是,它不能与任何已知的GEI归为一类,是一个新的GEI类别的第一个成员。该岛还携带了预测编码以下内容的基因:群体感应信号分子的合成、脂肪酸/聚羟基链烷酸酯生物合成、IV型分泌系统、PRTRC系统、DNA移动功能和>50个假定蛋白。phn基因簇50%的G + C含量与整个岛屿以及菌株Cs1-4染色体66.7%的G + C水平有显著差异,表明phn基因有不同的系统发育起源。总的来说,这些研究为影响微生物群落PAH生物降解能力的遗传元件,特别是HGT的潜在载体提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12bd/3318190/1125bf8231f8/fmicb-03-00125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验