Department of Research & Development, NanoImaging Services, La Jolla, California, United States of America.
PLoS One. 2012;7(4):e33235. doi: 10.1371/journal.pone.0033235. Epub 2012 Apr 6.
Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine.
The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM).
SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing.
Together, the methods presented here comprise a novel suite of non-intrusive VLP structural and functional characterization tools for recombinant vaccines. Key VLP structural features were defined and epitope-specific antigenicity was quantified while preserving epitope integrity and particle morphology. These tools should facilitate the development of other VLP-based vaccines.
疫苗开发、生产一致性和产品稳定性的基础是对疫苗结构-活性关系的理解。随着病毒样颗粒(VLP)在重组疫苗中的应用越来越受欢迎,人们对定义其关键特征的工具的需求也在不断增长。我们通过应用于乙型肝炎表面抗原(rHBsAg)VLP 基于疫苗来评估一套非侵入性的 VLP 表位结构和功能表征工具。
通过表面等离子体共振(SPR)监测 rHBsAg 表位对给定单克隆抗体的表位特异性免疫反应,并通过竞争性酶联免疫吸附试验(ELISA)定量分析 rHBsAg VLPs 在溶液中或与佐剂结合的情况。通过低温透射电子显微镜(cryoTEM)和溶液原子力显微镜(AFM)检查重组 rHBsAg 颗粒的结构。
SPR 和竞争性 ELISA 实时、快速地确定了溶液中的相对抗原性,而无需溶解颗粒状的铝基佐剂。这些方法证明了 HBsAg 的临床相关表位的性质是对热和/或氧化还原处理有反应的。溶液 AFM 和 cryoTEM 确定了疫苗颗粒的大小分布、形状和形态。经过氧化还原处理的 rHBsAg 使从 cryoTEM 图像进行 3D 重建成为可能-证实了先前提出的八面体结构和 HBsAg 颗粒的既定脂质与蛋白质比例。这些非侵入性生物物理和免疫化学分析的结果融合成一个全面的 rHBsAg 疫苗表位结构和功能的理解,这对于确保所需的表位形成、疫苗效力决定因素以及疫苗设计、开发和制造过程中的颗粒稳定性非常重要。
这里提出的方法一起构成了一套新的非侵入性 VLP 结构和功能表征工具,用于重组疫苗。定义了关键的 VLP 结构特征,并定量了表位特异性抗原性,同时保持了表位的完整性和颗粒的形态。这些工具应该有助于其他 VLP 疫苗的开发。