Suppr超能文献

对扁虱的被动监测:加强分析以尽早发现新出现的莱姆病风险。

Passive surveillance for I. scapularis ticks: enhanced analysis for early detection of emerging Lyme disease risk.

机构信息

Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada J2S 7C6.

出版信息

J Med Entomol. 2012 Mar;49(2):400-9. doi: 10.1603/me11210.

Abstract

Lyme disease (LD) is emerging in Canada because of the northward expansion of the geographic range of the tick vector Ixodes scapularis (Say). Early detection of emerging areas of LD risk is critical to public health responses, but the methods to do so on a local scale are lacking. Passive tick surveillance has operated in Canada since 1990 but this method lacks specificity for identifying areas where tick populations are established because of dispersion of ticks from established LD risk areas by migratory birds. Using data from 70 field sites in Quebec visited previously, we developed a logistic regression model for estimating the risk of I. scapularis population establishment based on the number of ticks submitted in passive surveillance and a model-derived environmental suitability index. Sensitivity-specificity plots were used to select an optimal threshold value of the linear predictor from the model as the signal for tick population establishment. This value was used to produce an "Alert Map" identifying areas where the passive surveillance data suggested ticks were establishing in Quebec. Alert Map predictions were validated by field surveillance at 76 sites: the prevalence of established I. scapularis populations was significantly greater in areas predicted as high-risk by the Alert map (29 out of 48) than in areas predicted as moderate-risk (4 out of 30) (P < 0.001). This study suggests that Alert Maps created using this approach can provide a usefully rapid and accurate tool for early identification of emerging areas of LD risk at a geographic scale appropriate for local disease control and prevention activities.

摘要

莱姆病(LD)在加拿大的出现是由于 tick 媒介 Ixodes scapularis(Say)地理范围向北扩张。早期发现 LD 风险的新兴地区对于公共卫生应对至关重要,但缺乏在当地范围内这样做的方法。自 1990 年以来,加拿大一直在进行被动蜱监测,但这种方法无法特异性地识别蜱种群建立的地区,因为蜱会因候鸟从已建立的 LD 风险地区扩散而分散。我们利用之前在魁北克的 70 个实地考察点的数据,开发了一个基于被动监测中提交的蜱数量和模型衍生的环境适宜性指数来估计 I. scapularis 种群建立风险的逻辑回归模型。使用灵敏度特异性图从模型中选择线性预测器的最佳阈值作为蜱种群建立的信号。该值用于制作“警报图”,以确定魁北克被动监测数据表明蜱正在建立的地区。通过在 76 个地点进行实地监测验证了警报图预测:在被警报图预测为高风险的地区(29 个中的 48 个),建立的 I. scapularis 种群的流行率明显高于被预测为中风险的地区(30 个中的 4 个)(P < 0.001)。这项研究表明,使用这种方法创建的警报图可以提供一种快速、准确的工具,用于在适当的地理尺度上早期识别 LD 风险的新兴地区,以便进行当地疾病控制和预防活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验