Suppr超能文献

信号转导系统中的剂量反应一致回路。

Dose-response aligned circuits in signaling systems.

机构信息

State key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, China.

出版信息

PLoS One. 2012;7(4):e34727. doi: 10.1371/journal.pone.0034727. Epub 2012 Apr 5.

Abstract

Cells use biological signal transduction pathways to respond to environmental stimuli and the behavior of many cell types depends on precise sensing and transmission of external information. A notable property of signal transduction that was characterized in the Saccharomyces cerevisiae yeast cell and many mammalian cells is the alignment of dose-response curves. It was found that the dose response of the receptor matches closely the dose responses of the downstream. This dose-response alignment (DoRA) renders equal sensitivities and concordant responses in different parts of signaling system and guarantees a faithful information transmission. The experimental observations raise interesting questions about the nature of the information transmission through DoRA signaling networks and design principles of signaling systems with this function. Here, we performed an exhaustive computational analysis on network architectures that underlie the DoRA function in simple regulatory networks composed of two and three enzymes. The minimal circuits capable of DoRA were examined with Michaelis-Menten kinetics. Several motifs that are essential for the dynamical function of DoRA were identified. Systematic analysis of the topology space of robust DoRA circuits revealed that, rather than fine-tuning the network's parameters, the function is primarily realized by enzymatic regulations on the controlled node that are constrained in limiting regions of saturation or linearity.

摘要

细胞利用生物信号转导途径来响应环境刺激,许多细胞类型的行为取决于对外界信息的精确感知和传递。在酿酒酵母细胞和许多哺乳动物细胞中,信号转导的一个显著特性是剂量反应曲线的对准。研究发现,受体的剂量反应与下游的剂量反应非常吻合。这种剂量反应对准(DoRA)使得信号系统的不同部分具有相同的灵敏度和一致的响应,并保证了忠实的信息传递。实验观察提出了一些有趣的问题,即通过 DoRA 信号网络传递信息的性质,以及具有这种功能的信号系统的设计原则。在这里,我们对由两个和三个酶组成的简单调控网络中的 DoRA 功能的网络结构进行了详尽的计算分析。我们用米氏动力学研究了能够实现 DoRA 的最小电路。确定了几个对于 DoRA 的动力学功能至关重要的基序。对稳健 DoRA 电路拓扑空间的系统分析表明,该功能主要是通过在受控节点上的酶调节来实现的,而不是通过微调网络的参数,这种酶调节受到饱和度或线性度的限制区域的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f4/3320644/1b4a9eaf266d/pone.0034727.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验