Department of Mechanical and Aerospace Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, USA.
Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
NPJ Syst Biol Appl. 2023 Jan 31;9(1):3. doi: 10.1038/s41540-023-00266-9.
"Dose-response alignment" (DoRA), where the downstream response of cellular signaling pathways closely matches the fraction of activated receptor, can improve the fidelity of dose information transmission. The negative feedback has been experimentally identified as a key component for DoRA, but numerical simulations indicate that negative feedback is not sufficient to achieve perfect DoRA, i.e., perfect match of downstream response and receptor activation level. Thus a natural question is whether there exist design principles for signaling motifs within only negative feedback loops to improve DoRA to near-perfect DoRA. Here, we investigated several model formulations of an experimentally validated circuit that couples two molecular switches-mGTPase (monomeric GTPase) and tGTPase (heterotrimeric GTPases) - with negative feedback loops. In the absence of feedback, the low and intermediate mGTPase activation levels benefit DoRA in mass action and Hill-function models, respectively. Adding negative feedback has versatile roles on DoRA: it may impair DoRA in the mass action model with low mGTPase activation level and Hill-function model with intermediate mGTPase activation level; in other cases, i.e., the mass action model with a high mGTPase activation level or the Hill-function model with a non-intermediate mGTPase activation level, it improves DoRA. Furthermore, we found that DoRA in a longer cascade (i.e., tGTPase) can be obtained using Hill-function kinetics under certain conditions. In summary, we show how ranges of activity of mGTPase, reaction kinetics, the negative feedback, and the cascade length affect DoRA. This work provides a framework for improving the DoRA performance in signaling motifs with negative feedback.
“剂量反应对准”(DoRA),其中细胞信号通路的下游反应与激活受体的分数密切匹配,可以提高剂量信息传递的保真度。负反馈已被实验确定为 DoRA 的关键组成部分,但数值模拟表明,负反馈不足以实现完美的 DoRA,即下游反应和受体激活水平的完美匹配。因此,一个自然的问题是,在仅存在负反馈回路的信号基元中是否存在设计原则,以将 DoRA 提高到接近完美的 DoRA。在这里,我们研究了几种实验验证的电路模型,这些电路模型将两个分子开关——单体 GTP 酶(monomeric GTPase)和三聚体 GTP 酶(heterotrimeric GTPases)——与负反馈回路耦合。在不存在反馈的情况下,低中和中间 mGTPase 激活水平分别在质量作用和 Hill 函数模型中有利于 DoRA。添加负反馈对 DoRA 具有多种作用:在低 mGTPase 激活水平的质量作用模型和中间 mGTPase 激活水平的 Hill 函数模型中,它可能会损害 DoRA;在其他情况下,即高 mGTPase 激活水平的质量作用模型或非中间 mGTPase 激活水平的 Hill 函数模型,它会改善 DoRA。此外,我们发现,在某些条件下,使用 Hill 函数动力学可以在更长的级联(即 tGTPase)中获得 DoRA。总之,我们展示了 mGTPase 的活性范围、反应动力学、负反馈和级联长度如何影响 DoRA。这项工作为在具有负反馈的信号基元中提高 DoRA 性能提供了一个框架。