Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2012 Feb 8;134(5):2732-41. doi: 10.1021/ja2103839. Epub 2012 Jan 25.
We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.
我们报告了一个组合量子力学/分子力学(QM/MM)研究,该研究针对环己酮单加氧酶(CHMO)催化的酶促 Baeyer-Villiger 反应的机制。在 QM/MM 几何优化和反应路径计算中,密度泛函理论(B3LYP/TZVP)用于描述由底物(环己酮)、C4a-过氧黄素异咯嗪环、Arg-329 侧链以及 NADP(+)的烟酰胺环和相邻的核糖组成的 QM 区域,而酶的其余部分则由 CHARMM 力场表示。采用相同的 QM/MM 分区进行 QM/MM 分子动力学模拟和半经验 OM3/CHARMM 水平的自由能计算。根据 QM/MM 计算,酶-反应物复合物包含带负电荷的阴离子去质子化的 C4a-过氧黄素,该阴离子通过与 Arg-329 残基和 NADP(+)辅因子的强氢键而稳定。CHMO 催化的反应通过具有明显阴离子特征的 Criegee 中间体进行。初始加成反应必须克服约 9 kcal/mol 的能垒。形成的 Criegee 中间体占据 QM/MM 势能表面上的浅势阱,并可通过克服约 7 kcal/mol 的第二个能垒来转化为内酯产物。后一步迁移步骤的过渡态是 QM/MM 能量曲线的最高点。QM 区域的气相重新优化导致更高的能垒,并证实 Arg-329 残基和 NADP(+)辅因子对 CHMO 催化效率的关键作用。CHMO 催化的 4-甲基环己酮氧化的 QM/MM 计算再现并合理化了实验观察到的该底物的(S)对映选择性,这由相应的 Criegee 中间体的构象偏好和迁移步骤的后续过渡态决定。