Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85724-5051, USA.
Microcirculation. 2012 Aug;19(6):530-8. doi: 10.1111/j.1549-8719.2012.00184.x.
Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network.
With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values.
The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average.
The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data, and provides a basis for deducing functional properties of microvessel networks.
最近用于成像微血管结构的方法提供了包含数千个段的网络的几何数据。但是,预测诸如溶质传输等功能特性还需要有关血流率的信息,而测量许多单个流量是很困难的。本文提出了一种基于对供应和排出网络的边界段中的流量的不完全信息来估计微血管网络中的流量率的方法。
在边界数据不完全的情况下,控制血流的方程形成欠定线性系统。开发了一种算法,该算法使用关于微血管中壁切应力和压力分布的独立信息来通过最小化压力和壁切应力与目标值的偏差来解决这种不确定性。
该算法使用先前从大鼠肠系膜中的四个微血管网络中获得的实验流量数据进行了测试。在具有两个或三个规定的边界条件的情况下,预测流量在大多数段中误差相对较小,平均不到 10%的流量方向错误。
该方法可用于基于不完全边界数据估计微血管网络中的流量率,并为推断微血管网络的功能特性提供基础。