Suppr超能文献

体内静电纺丝的 PCL/胶原共混纳米纤维支架的三维血管化。

Three-dimensional vascularization of electrospun PCL/collagen-blend nanofibrous scaffolds in vivo.

机构信息

Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich- Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.

出版信息

J Biomed Mater Res A. 2012 Sep;100(9):2302-11. doi: 10.1002/jbm.a.34172. Epub 2012 Apr 17.

Abstract

Nanofiber scaffolds have proven their various advantages for tissue engineering and have been analyzed extensively. However, to date the three-dimensional pattern of vascularization inside nanofibrous scaffolds is unknown. This study introduces a novel method to visualize and quantify vascularization of electrospun nanofibrous PCL/collagen scaffolds in 3D in vivo. Randomly spun PCL/collagen blend and parallel aligned PCL/collagen blend/PEO scaffolds were analyzed for numbers and patterns of sprouting vessels inside the constructs using microCT scans at different time points. The image data derived from the microCT scans was converted into three-dimensional vessel trees. The aligned scaffold showed a significantly smaller number of sprouting vessels but vascularization in the center of the constructs occurred considerably earlier than in the nonwoven scaffold. Thus, for the first time the actual pattern of vascularization in nanofibrous scaffolds can be visualized three-dimensionally. These results demonstrate that the 3D pattern of vessel trees could be an essential parameter to evaluate nanofiber scaffolds for their suitability for tissue engineering as well as in vivo applications in general.

摘要

纳米纤维支架已经证明了它们在组织工程中的各种优势,并得到了广泛的分析。然而,迄今为止,纳米纤维支架内部的三维血管生成模式仍然未知。本研究介绍了一种新的方法,可以在体可视化和定量分析电纺纳米纤维聚己内酯/胶原蛋白支架中的血管生成。使用 microCT 扫描分析随机纺制的 PCL/胶原蛋白共混物和平行排列的 PCL/胶原蛋白共混物/PEO 支架在不同时间点内部芽生血管的数量和模式。从 microCT 扫描中获得的图像数据被转换为三维血管树。与无纺支架相比,排列整齐的支架中芽生血管的数量明显较少,但支架中心的血管生成发生得更早。因此,首次可以三维可视化纳米纤维支架中的实际血管生成模式。这些结果表明,血管树的三维模式可能是评估纳米纤维支架是否适合组织工程以及一般体内应用的重要参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验