Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.
Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60. doi: 10.1089/ars.2011.4327. Epub 2012 Jun 8.
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
硫氧还蛋白 (Trx) 和谷氧还蛋白 (Grx) 构成了硫醇氧化还原酶家族。在过去的十年中,我们对植物中的 Trx 和 Grx 的了解有了显著的提高。拟南芥基因组序列的发布揭示了 Trx 和 Grx 基因数量之多,令人惊讶。几个维管植物和非维管植物基因组的出现,使得对基因进行明确分类,并确定它们在植物进化过程中的出现时间成为可能。已经开发出蛋白质组学方法来鉴定潜在的 Trx 和 Grx 靶蛋白,这些蛋白参与植物生长的各个方面,包括基础代谢、铁/硫簇形成、发育、适应环境和应激反应。对特定 Trx 和 Grx 的生化特性的分析表明,它们对一些靶酶具有很强的特异性,特别是在质体 Trx 和 Grx 中。与这种特异性明显矛盾的是,遗传方法显示大多数可用的 Trx 和 Grx 突变体没有表型,这表明 Trx 和 Grx 成员之间也存在冗余。尽管如此,在多个基因失活的突变体的分离和几种遗传筛选中,证明了 Trx 和 Grx 参与了病原体反应、植物激素途径以及植物发育的几个控制点。细胞质 Trx 被 NADPH-硫氧还蛋白还原酶 (NTR) 还原,而 Grx 的还原依赖于还原型谷胱甘肽 (GSH)。有趣的是,最近的综合生化分析、蛋白质组学数据和遗传学的发展揭示了细胞质 NTR/Trx 和 GSH/Grx 系统之间广泛的相互作用。这种发生在多个层面的相互作用,揭示了植物中氧化还原系统的高度灵活性。