文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

投影 x 空间磁粒子成像。

Projection x-space magnetic particle imaging.

机构信息

Department of Bioengineering, University of California, Berkeley, CA 94720, USA.

出版信息

IEEE Trans Med Imaging. 2012 May;31(5):1076-85. doi: 10.1109/TMI.2012.2185247.


DOI:10.1109/TMI.2012.2185247
PMID:22552332
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3990468/
Abstract

Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

摘要

投影式磁粒子成像(MPI)可以将传统的 3D-MPI 的成像速度提高 100 倍以上。在这项工作中,我们推导出了 2D-x 空间信号方程和 2D 图像方程,并引入了投影 MPI 成像仪的信号衰减和分辨率损失的概念。然后,我们描述了一种 x 空间投影 MPI 扫描仪的设计和构建,该扫描仪在 10cm 的无磁体孔径内具有 2.35T/m 的磁场梯度。该系统使用 Resovist 示踪剂的预期分辨率为 3.5×8.0mm,实验分辨率为 3.8×8.4mm。该系统以 10 帧/秒的速度对 2.5cm×5.0cm 的部分视场(FOV)进行成像,4 秒内采集 10cm×5.0cm 的全视场。最后,我们对分辨率体模、复杂的“Cal”体模、注射了 Resovist 示踪剂的小鼠进行成像,并通过实验验证了 x 空间空间分辨率的理论预测。

相似文献

[1]
Projection x-space magnetic particle imaging.

IEEE Trans Med Imaging. 2012-5

[2]
In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.

Phys Med Biol. 2017-5-7

[3]
In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach.

Phys Med Biol. 2017-5-7

[4]
Magnetic particle imaging: kinetics of the intravascular signal in vivo.

Int J Nanomedicine. 2014-9-3

[5]
Magnetic particle imaging: visualization of instruments for cardiovascular intervention.

Radiology. 2012-9-20

[6]
Magnetic Particle Imaging-Guided Stenting.

J Endovasc Ther. 2019-5-27

[7]
Projection reconstruction magnetic particle imaging.

IEEE Trans Med Imaging. 2012-11-15

[8]
Multidimensional x-space magnetic particle imaging.

IEEE Trans Med Imaging. 2011-3-10

[9]
Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.

Biomed Tech (Berl). 2013-12

[10]
Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging.

IEEE Trans Biomed Eng. 2024-10

引用本文的文献

[1]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[2]
A Physics-Based Computational Forward Model for Efficient Image Reconstruction in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2025-5

[3]
Non-FFP-Based Magnetic Particle Imaging (NFMPI) with an Open-Type RF Coil System: A Feasibility Study.

Sensors (Basel). 2025-1-23

[4]
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.

Theranostics. 2024

[5]
Temperature-Dependent Changes in Resolution and Coercivity of Superparamagnetic and Superferromagnetic Iron Oxide Nanoparticles.

Int J Magn Part Imaging. 2023

[6]
Development of high-efficiency superparamagnetic drug delivery system with MPI imaging capability.

Front Bioeng Biotechnol. 2024-3-20

[7]
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

J Magn Reson Imaging. 2025-1

[8]
A Novel Field-Free Line Generator for Mechanically Scanned Magnetic Particle Imaging.

Sensors (Basel). 2024-1-31

[9]
Harmonic dependence of thermal magnetic particle imaging.

Sci Rep. 2023-9-22

[10]
iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions.

Sci Rep. 2023-6-28

本文引用的文献

[1]
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.

Med Phys. 2011-3

[2]
Multidimensional x-space magnetic particle imaging.

IEEE Trans Med Imaging. 2011-3-10

[3]
Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process.

IEEE Trans Med Imaging. 2011-2-10

[4]
Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy.

IEEE Trans Magn. 2010-7-1

[5]
Efficient generation of a magnetic field-free line.

Med Phys. 2010-7

[6]
The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation.

IEEE Trans Med Imaging. 2010-6-7

[7]
2D model-based reconstruction for magnetic particle imaging.

Med Phys. 2010-2

[8]
FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease.

Am J Hematol. 2010-5

[9]
Optimization of nanoparticle core size for magnetic particle imaging.

J Magn Magn Mater. 2009

[10]
Model-based reconstruction for magnetic particle imaging.

IEEE Trans Med Imaging. 2009-5-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索