Lowe Aaron M, Abbott Nicholas L
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706.
Chem Mater. 2012 Mar 13;24(5):746-758. doi: 10.1021/cm202632m. Epub 2011 Dec 5.
Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.
液晶作为对外部刺激(如电场和光场)作出响应的材料已有很长的使用历史。最近,一系列研究报告了液晶材料的设计,这些材料会因一系列生物相互作用而发生有序转变,包括涉及蛋白质、核酸、病毒、细菌和哺乳动物细胞的相互作用。设计用于此类应用的液晶材料所面临的一个核心挑战是对材料界面进行剪裁,以便将靶向生物相互作用与有序转变相耦合。本综述描述了在设计适用于生物应用的液晶材料界面方面的最新进展。本综述讨论的方法包括使用脂质组装体、含有寡肽的聚合物膜、阳离子表面活性剂 - DNA 复合物、肽两亲分子、界面蛋白质组装体和多层聚合物膜。